Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 35(42): 5629-5636, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886949

RESUMO

The relationship between the antigen dose and the quality of an immune response generated upon immunization is poorly understood. However, findings show that the immune system is indeed influenced by the antigen dose; hence underlining the importance of correctly determining which dose to use in order to generate a certain type of immune response. To investigate this area further, we used Göttingen minipigs asan animal model especially due to the similar body size and high degree of immunome similarity between humans and pigs. In this study, we show that both a humoral and a cell-mediated immune (CMI) response can be generated following intraperitoneal immunization with tetanus toxoid (TT) formulated in the CAF09 liposomal adjuvant. Importantly, a low antigen dose induced more TT-specific polyfunctional T cells, whereas antigen-specific IgG production was observed upon high-dose immunization. Independent of antigen dose, intraperitoneal administration of antigen increased the amount of TT-specific cytotoxic CD8ß+ T cells within the cytokine-producing T-cell pool when compared to the non-cytokine producing T-cell compartment. Taken together, these results demonstrate that a full protein formulated in the CAF09 adjuvant and administered to pigs via the intraperitoneal route effectively generates a cytotoxic T-cell response. Moreover, we confirm the inverse relationship between the antigen dose and the induction of polyfunctional T cells in a large animal model. These finding can have implications for the design of upcoming vaccine trials aiming at establishing a cytotoxic T-cell response.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos/imunologia , Porco Miniatura/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Química Farmacêutica/métodos , Imunoglobulina G/imunologia , Suínos , Toxoide Tetânico/imunologia , Vacinação/métodos
2.
Front Genet ; 6: 286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442104

RESUMO

Immunotherapy has increased overall survival of metastatic cancer patients, and cancer antigens are promising vaccine targets. To fulfill the promise, appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential. Previous development of therapeutic cancer vaccines has largely been based on studies in mice, and the majority of these candidate vaccines failed to induce therapeutic responses in the subsequent human clinical trials. Given that antigen dose and vaccine volume in pigs are translatable to humans and the porcine immunome is closer related to the human counterpart, we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC, both important in human cancer development and progression, were used as vaccine targets and 12 pigs were immunized with overlapping 20mer peptides spanning the entire porcine IDO and RhoC sequences formulated in CTL-inducing adjuvants: CAF09, CASAC, Montanide ISA 51 VG, or PBS. Taking advantage of recombinant swine MHC class I molecules (SLAs), the peptide-SLA complex stability was measured for 198 IDO- or RhoC-derived 9-11mer peptides predicted to bind to SLA-1(*)04:01, -1(*)07:02, -2(*)04:01, -2(*)05:02, and/or -3(*)04:01. This identified 89 stable (t½ ≥ 0.5 h) peptide-SLA complexes. By IFN-γ release in PBMC cultures we monitored the vaccine-induced peptide-specific CTL responses, and found responses to both IDO- and RhoC-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...