Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Knowl Inf Syst ; 46(1): 115-150, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26752800

RESUMO

This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems.

2.
Eur Heart J ; 36(18): 1123-35a, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25163546

RESUMO

AIM: Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. METHODS AND RESULTS: In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. CONCLUSION: This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Análise de Sequência de DNA/métodos , Cardiomiopatia Dilatada/diagnóstico , Europa (Continente) , Estudos de Viabilidade , Feminino , Marcadores Genéticos/genética , Genótipo , Heterozigoto , Humanos , Masculino , Mutação/genética , Fenótipo , Características de Residência
3.
KDD ; 2012: 280-288, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25937993

RESUMO

Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes.

4.
AMIA Annu Symp Proc ; : 485-9, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18999010

RESUMO

We present a study on how to predict new emerging trends in the biomedical domain based on textual data. We thereby propose a way of anticipating the transformation of arbitrary information into ground truth knowledge by predicting the inclusion of new terms into the MeSH ontology. We also discuss the preparation of a dataset for the evaluation of emerging trend prediction algorithms that is based on PubMed abstracts and related MeSH terms. The results suggest that early prediction of emerging trends is possible.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Fator de Impacto de Revistas , Medical Subject Headings/estatística & dados numéricos , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão/métodos , Publicações Periódicas como Assunto/classificação , Publicações Periódicas como Assunto/tendências , Terminologia como Assunto , Algoritmos , Inteligência Artificial , Interpretação Estatística de Dados , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...