Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Gene Ther ; 21(5): 464-471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573568

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disorder caused by α-L-iduronidase (IDUA) deficiency. The available treatments are not effective in improving all signs and symptoms of the disease. OBJECTIVE: In the present study, we evaluated the transfection efficiency of repeated intravenous administrations of cationic nanoemulsions associated with the plasmid pIDUA (containing IDUA gene). METHODS: Cationic nanoemulsions were composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]- 2000) (DSPE-PEG), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), medium- chain triglycerides, glycerol, and water and were prepared by high-pressure homogenization and were repeatedly administered to MPS I mice for IDUA production and gene expression. RESULTS: A significant increase in IDUA expression was observed in all organs analyzed, and IDUA activity tended to increase with repeated administrations when compared to our previous report when mice received a single administration of the same dose. In addition, GAGs were partially cleared from organs, as assessed through biochemical and histological analyzes. There was no presence of inflammatory infiltrate, necrosis, or signs of an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed a reduced presence of macrophage cells in treated than in untreated MPS I mice. CONCLUSION: These sets of results suggest that repeated administrations can improve transfection efficiency of cationic complexes without a significant increase in toxicity in the MPS I murine model.


Assuntos
Mucopolissacaridose I , Animais , Terapia Genética , Iduronidase/genética , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Plasmídeos , Transfecção
2.
Int J Pharm ; 548(1): 151-158, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29940298

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by the lysosomal accumulation of glycosaminoglycans (GAGs) due to the deficiency of the enzyme alpha-L-iduronidase (IDUA). Currently available treatments may improve several clinical manifestations, but they have limited effects on joint disease, resulting in persistent orthopedic complications and impaired mobility. Thus, this study aimed to perform an intra-articular administration of cationic nanoemulsions complexed with the plasmid encoding for the IDUA protein (pIDUA) targeting MPS I gene therapy for the synovial joints. Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and the pIDUA plasmid was associated by adsorption onto the surface of nanoemulsions (pIDUA/NE or pIDUA/NE-PEG). The physicochemical characterization showed that the presence of DSPE-PEG in pIDUA/NE-PEG formulations led to small and highly stable droplets even when incubated with simulated synovial fluid (SSF), when compared to the non-pegylated complexes (pIDUA/NE). Uptake by fibroblast-like synoviocytes (FLS) was demonstrated, and high cell viability (70%) in addition with increased IDUA activity (2.5% of normal) were observed after incubation with pIDUA/NE-PEG. The intra-articular injection of pIDUA/NE-PEG complexes in MPS I mice showed that the complexes were localized in the joints, were able to transfect synovial cells, and thus promoted an increase in IDUA activity and expression in the synovial fluid, with no significant activity in other tissues (kidney, liver, lung, and spleen). The overall results demonstrated a contained, safe, tolerable, and effective in situ approach of nonviral intra-articular gene therapy targeting the reduction or prevention of the debilitating orthopedic complications of MPS I disorder.


Assuntos
Terapia Genética/métodos , Iduronidase/genética , Mucopolissacaridose I/terapia , Animais , DNA Complementar/genética , Emulsões , Humanos , Injeções Intra-Articulares , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmídeos , Líquido Sinovial/metabolismo
3.
Int J Pharm ; 534(1-2): 356-367, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29038065

RESUMO

Since the first clinical studies, knowledge in the field of gene therapy has advanced significantly, and these advances led to the development and subsequent approval of the first gene medicines. Although viral vectors-based products offer efficient gene expression, problems related to their safety and immune response have limited their clinical use. Thus, design and optimization of nonviral vectors is presented as a promising strategy in this scenario. Nonviral systems are nanotechnology-based products composed of polymers or lipids, which are usually biodegradable and biocompatible. Cationic liposomes are the most studied nonviral carriers and knowledge about these systems has greatly evolved, especially in understanding the role of phospholipids and cationic lipids. However, the search for efficient delivery systems aiming at gene therapy remains a challenge. In this context, cationic nanoemulsions have proved to be an interesting approach, as their ability to protect and efficiently deliver nucleic acids for diverse therapeutic applications has been demonstrated. This review focused on cationic nanoemulsions designed for gene therapy, providing an overview on their composition, physicochemical properties, and their efficacy on biological response in vitro and in vivo.


Assuntos
Cátions/química , Emulsões/química , Nanopartículas/química , Ácidos Nucleicos/química , Animais , Terapia Genética/métodos , Humanos , Lipossomos/química , Polímeros/química
4.
Int J Nanomedicine ; 12: 2061-2067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352175

RESUMO

Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-l-iduronidase (IDUA) deficiency. This study used IDUA knockout mice as a model to evaluate whether parameters such as dose of plasmid and time of treatment could influence the transfection efficiency of complexes formed with PEGylated cationic nanoemulsions and plasmid (pIDUA), which contains the gene that encodes for IDUA. Formulations were composed of medium chain triglycerides, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), glycerol, and water and were prepared by the adsorption or encapsulation of preformed pIDUA-DOTAP complexes by high-pressure homogenization. A progressive increase in IDUA expression was observed with an increase in the dose and time of transfection for mice treated with both complexes (adsorbed and encapsulated), especially in the liver. Regardless of the complex administered, a significant increase in IDUA activity was detected in lungs and liver compared with nontreated MPS I when a dose of 60 µg was administered and IDUA activity was measured 7 days postadministration. Tissue sections of major organs showed no presence of cell necrosis, inflammatory infiltrate, or an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed no difference in the number of macrophage cells in treated and nontreated animals, indicating the absence of inflammatory reaction caused by the treatment. The data set obtained in this study allowed establishing that factors such as dose and time can influence transfection efficiency in different degrees and that these complexes did not lead to any lethal effect in the MPS I murine model used.


Assuntos
Emulsões/química , Iduronidase/metabolismo , Mucopolissacaridose I/metabolismo , Nanopartículas/química , Plasmídeos/metabolismo , Transfecção , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
5.
J Nanosci Nanotechnol ; 15(1): 810-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328445

RESUMO

Mucopolysaccharidosis I (MPS I) is an autosomal recessive lysosomal storage disease due to deficient a-L-iduronidase (IDUA) activity. It results in the accumulation of the glycosaminoglycans (GAGs) heparan and dermatan sulfate and leads to several clinical manifestations. This study describes the use of cationic nanoemulsions as a non-viral carrier for the plasmid named pIDUA, which has the gene that encodes for the IDUA enzyme. Cationic nanoemulsions, composed by a medium chain triglycerides oil core stabilized by DOTAP, DOPE and DSPE-PEG, were prepared by high pressure homogeneization. pIDUA was complexed with nanoemulsions in the end of manufacturing process. Physicochemical properties of complexes were influenced by the charge ratio used. From a charge ratio of +2/-, it was observed a total complexation of pIDUA with formulation as well as a protection of plasmid against DNAse I digestion. In vitro assay in fibroblasts of one MPS I patient presented greater and significant trasfection efficiency for pIDUA complexed to formulation in the +4/- charge ratio. This formulation was administered via the tail vein and the portal vein. Animals were compared to untreated MPS I mice. Transfection efficiency was measured as IDUA enzyme activity. After intravenous administration, IDUA activity was significantly higher in lungs and liver. The set of results shows the formulation obtained at the +4/- charge ratio as a promising non-viral gene delivery system, once showed increased enzyme activity both in vitro and in vivo.


Assuntos
Portadores de Fármacos/química , Emulsões/química , Mucopolissacaridose I/terapia , Nanoestruturas/química , Plasmídeos/genética , Transfecção/métodos , Animais , Cátions/química , Células Cultivadas , Fibroblastos , Humanos , Iduronidase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose I/genética , Fosfatidiletanolaminas/química , Plasmídeos/química , Polietilenoglicóis/química
6.
J Control Release ; 209: 37-46, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25886705

RESUMO

Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-L-iduronidase deficiency. This study proposed the use of cationic nanoemulsions as non-viral vectors for a plasmid (pIDUA) containing the gene that codes for alpha-L-iduronidase. Nanoemulsions composed of medium chain triglycerides (MCT)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP)/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) were prepared by high pressure homogenization. Formulations were prepared by the adsorption or encapsulation of preformed pIDUA-DOTAP complexes into the oil core of nanoemulsions at different charge ratios. pIDUA complexed was protected from enzymatic degradation by DNase I. The physicochemical characteristics of complexes in protein-containing medium were mainly influenced by the presence of DSPE-PEG. Bragg reflections corresponding to a lamellar organization were identified for blank formulations by energy dispersive X-ray diffraction, which could not be detected after pIDUA complexation. The intravenous injection of these formulations in MPS I knockout mice led to a significant increase in IDUA activity (fluorescence assay) and expression (RT-qPCR) in different organs, especially the lungs and liver. These findings were more significant for formulations prepared at higher charge ratios (+4/-), suggesting a correlation between charge ratio and transfection efficiency. The present preclinical results demonstrated that these nanocomplexes represent a potential therapeutic option for the treatment of MPS I.


Assuntos
Terapia Genética , Iduronidase/genética , Mucopolissacaridose I/terapia , Transfecção/métodos , Animais , Modelos Animais de Doenças , Emulsões , Ácidos Graxos Monoinsaturados/química , Expressão Gênica , Humanos , Iduronidase/química , Iduronidase/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Nanoestruturas/química , Fosfatidiletanolaminas/química , Plasmídeos , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Baço/metabolismo , Triglicerídeos/química
7.
Int J Nanomedicine ; 6: 2213-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114484

RESUMO

BACKGROUND: Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes. METHODS: Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction. RESULTS: The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥ 1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE. CONCLUSION: The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.


Assuntos
DNA/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Aminas , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Estabilidade de Medicamentos , Emulsões/química , Emulsões/farmacologia , Células Hep G2 , Humanos , Nanoestruturas/química , Plasmídeos/química , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...