Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 123(27): 5930-5934, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31188607

RESUMO

Using molecular dynamics simulations, we examine the dynamics of a family of model polymers with varying chain length and torsional potential barriers. We focus on features of the dynamics of polymers that are seen experimentally but absent in simulations of freely rotating and freely jointed chains. The reduced effect of volume on the segmental dynamics with increasing chain length, a capacity for pressure densification, and the deviation from constant Johari-Goldstein relaxation time at a constant segmental relaxation time all have a common origin, torsional rigidity, and these effects become increasingly apparent for more rigid chains.

2.
J Chem Phys ; 130(6): 064907, 2009 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-19222298

RESUMO

We investigate the segmental and local dynamics as well as the transport of Li(+) cations in a series of model poly(ethylene oxide)-based single-ion conductors with varying ion content, using dielectric relaxation spectroscopy. We observe a slowing down of segmental dynamics and an increase in glass transition temperature above a critical ion content, as well as the appearance of an additional relaxation process associated with rotation of ion pairs. Conductivity is strongly coupled to segmental relaxation. For a fixed segmental relaxation frequency, molar conductivity increases with increasing ion content. A physical model of electrode polarization is used to separate ionic conductivity into the contributions of mobile ion concentration and ion mobility, and a model for the conduction mechanism involving transient triple ions is proposed to rationalize the behavior of these quantities as a function of ion content and the measured dielectric constant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...