Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3486, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837594

RESUMO

The CRISPR/Cas9 gene editing tool enables accessible and efficient modifications which (re)ignited molecular research in certain species. However, targeted integration of large DNA fragments using CRISPR/Cas9 can still be challenging in numerous models. To systematically compare CRISPR/Cas9's efficiency to classical homologous recombination (cHR) for insertion of large DNA fragments, we thoroughly performed and analyzed 221 experiments targeting 128 loci in mouse ES cells. Although both technologies proved efficient, CRISPR/Cas9 yielded significantly more positive clones as detected by overlapping PCRs. It also induced unexpected rearrangements around the targeted site, ultimately rendering CRISPR/Cas9 less efficient than cHR for the production of fully validated clones. These data show that CRISPR/Cas9-mediated recombination can induce complex long-range modifications at targeted loci, thus emphasizing the need for thorough characterization of any genetically modified material obtained through CRISPR-mediated gene editing before further functional studies or therapeutic use.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes/métodos , Rearranjo Gênico/genética , Animais , Loci Gênicos , Genótipo , Recombinação Homóloga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
2.
Transplantation ; 102(8): 1271-1278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29688994

RESUMO

BACKGROUND: Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease, and these disease models would greatly benefit from immunodeficient rats to test different immunogenic treatments. METHODS: We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. RESULTS: As compared with Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient because they partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype because they displayed undetectable levels of T, B, and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1- or Il2rg-deficient rats and undetectable in Rats Rag1 and Il2rg (RRG) animals. Rag1- or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors, whereas animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin, and hepatocytes. Immune humanization of RRG animals was unsuccessful. CONCLUSIONS: Thus, immunodeficient RRG animals are useful recipients for long-term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.


Assuntos
Deleção de Genes , Proteínas de Homeodomínio/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Modelos Animais de Doenças , Éxons , Feminino , Genótipo , Hepatócitos/citologia , Humanos , Sistema Imunitário , Fígado/imunologia , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Transplante de Pele , Transplante Heterólogo , Transplantes
3.
Cell Rep ; 14(9): 2263-2272, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923600

RESUMO

Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Marcação de Genes , Humanos , Mutação INDEL , Camundongos , Oligonucleotídeos/genética , Ratos , Peixe-Zebra
4.
Sci Rep ; 5: 14410, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442875

RESUMO

The generation of genetically-modified organisms has been revolutionized by the development of new genome editing technologies based on the use of gene-specific nucleases, such as meganucleases, ZFNs, TALENs and CRISPRs-Cas9 systems. The most rapid and cost-effective way to generate genetically-modified animals is by microinjection of the nucleic acids encoding gene-specific nucleases into zygotes. However, the efficiency of the procedure can still be improved. In this work we aim to increase the efficiency of CRISPRs-Cas9 and TALENs homology-directed repair by using TALENs and Cas9 proteins, instead of mRNA, microinjected into rat and mouse zygotes along with long or short donor DNAs. We observed that Cas9 protein was more efficient at homology-directed repair than mRNA, while TALEN protein was less efficient than mRNA at inducing homology-directed repair. Our results indicate that the use of Cas9 protein could represent a simple and practical methodological alternative to Cas9 mRNA in the generation of genetically-modified rats and mice as well as probably some other mammals.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia de Proteínas , Reparo de DNA por Recombinação/genética , Zigoto/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Ratos , Ratos Sprague-Dawley
5.
Genome Res ; 24(8): 1371-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24989021

RESUMO

The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.


Assuntos
Marcação de Genes , Engenharia Genética , Animais , Sequência de Bases , Células Cultivadas , Enzimas de Restrição do DNA/biossíntese , Enzimas de Restrição do DNA/genética , Feminino , Hipoxantina Fosforribosiltransferase/genética , Masculino , Microinjeções , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Reparo de DNA por Recombinação , Zigoto
6.
FASEB J ; 27(2): 703-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23150522

RESUMO

Despite the recent availability of gene-specific nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like nucleases (TALENs), there is still a need for new tools to modify the genome of different species in an efficient, rapid, and less costly manner. One aim of this study was to apply, for the first time, engineered meganucleases to mutate an endogenous gene in animal zygotes. The second aim was to target the mouse and rat recombination activating gene 1 (Rag1) to describe, for the first time, Rag1 knockout immunodeficient rats. We microinjected a plasmid encoding a meganuclease for Rag1 into the pronucleus of mouse and rat zygotes. Mutant animals were detected by PCR sequencing of the targeted sequence. A homozygous RAG1-deficient rat line was generated and immunophenotyped. Meganucleases were efficient, because 3.4 and 0.6% of mouse and rat microinjected zygotes, respectively, generated mutated animals. RAG1-deficient rats showed significantly decreased proportions and numbers of immature and mature T and B lymphocytes and normal NK cells vs. littermate wild-type controls. In summary, we describe the use of engineered meganucleases to inactivate an endogenous gene with efficiencies comparable to those of ZFNs and TALENs. Moreover, we generated an immunodeficient rat line useful for studies in which there is a need for biological parameters to be analyzed in the absence of immune responses.


Assuntos
Técnicas de Inativação de Genes/métodos , Genes RAG-1 , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Animais , Sequência de Bases , DNA/administração & dosagem , DNA/genética , Endonucleases/genética , Endonucleases/metabolismo , Marcação de Genes/métodos , Engenharia Genética/métodos , Transplante de Coração/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Transplante Homólogo
7.
Methods Mol Biol ; 597: 137-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20013231

RESUMO

Somatic cell nuclear transfer (SCNT) is a powerful tool for the investigation of the mechanisms of nuclear remodeling. In addition, SCNT may offer the possibility of introducing targeted mutations by homologous recombination in species for which ES cell technology is not available. The rat specific features of the oocyte have long impeded the development of SCNT. We detail here the procedures developed and optimized during the last several years for the optimization of rat cloning.


Assuntos
Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear , Ratos/genética , Animais , Células Cultivadas , Transferência Embrionária/métodos , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Oócitos/citologia , Ratos Sprague-Dawley
8.
Drug Discov Today ; 13(11-12): 488-94, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18549974

RESUMO

Because of its relevance to human physiology, the rat may provide highly predictable models for the pharmaceutical industry. Until recently, the lack of efficient tools to manipulate the rat genome has drastically limited the use of this research model. Recent advances in gene expression and transgenic systems have provided new possibilities for the generation of informative rat models. This review presents a state-of-the-art transgenic technologies in the rat and their application to biomedical research. Novel technologies enabling the faithful expression of human genes in rats are focussed on specifically.


Assuntos
Animais Geneticamente Modificados , Pesquisa Biomédica/métodos , Modelos Animais de Doenças , Animais , Indústria Farmacêutica , Expressão Gênica , Marcação de Genes/métodos , Humanos , Ratos , Transgenes
9.
Transgenic Res ; 14(5): 531-46, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16245144

RESUMO

The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.


Assuntos
Animais Geneticamente Modificados , Técnicas Genéticas , Ratos/genética , Animais , Clonagem de Organismos , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Feminino , Marcação de Genes , Vetores Genéticos , Genoma , Lentivirus/genética , Masculino , Microinjeções , Gravidez
10.
Eur J Neurosci ; 19(4): 798-808, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15009127

RESUMO

The capacity of embryonic stem cells (ES cells) to differentiate into neuronal cells represents a potential source for neuronal replacement and a model for studying factors controlling early stages of neuronal differentiation. Various molecules have been used to induce such differentiation but so far neuropeptides acting via functional G-protein-coupled receptors (GPCRs) have not been investigated. Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides expressed in early development which affect neuronal precursor proliferation and neuronal differentiation. VIP and PACAP share two common receptors (VPAC1 and VPAC2 receptors) while only PACAP binds with high affinity to PAC1 receptors. The aim of the study was to determine whether VIP and PACAP could produce functional neuronal differentiation of ES cells. Mouse ES cells were allowed to aggregate in embryoid bodies (EBs) in the presence or not of VIP and PACAP for 1 week. VIP and PACAP potently increased the proportion of EB-derived cells expressing specifically a neuronal phenotype shown by immunocytochemistry and neurite outgrowth without altering glial cell number. Binding and RT-PCR analyses demonstrated the presence of VPAC2 and PAC1 receptors on ES cells. Accordingly, both peptides increased cyclic AMP and intracellular calcium. In contrast, EB-derived cells only expressed a functional PAC1 receptor, suggesting a switch in GPCR phenotype during ES cell differentiation. These original data demonstrate that functional GPCRs for VIP and PACAP are present on ES cells and that these neuropeptides may induce their differentiation into a neuronal phenotype. It opens an exciting new field for neuropeptide regulation of tissue ontogenesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Células-Tronco/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Células-Tronco/citologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...