Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8015, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570215

RESUMO

To understand fluid induced seismicity, we have designed a large-scale laboratory experiment consisting of a one-cubic-meter sandstone with an artificial fault cut and fluid-injection boreholes. The sandstone block is assembled in a true triaxial loading frame and equipped with 38 piezoelectric sensors to locate and characterise acoustic emission events. The differential stress on the artificial fault is increased in stages to bring it towards a critically stressed state. After each stage of differential stress increase, fluids are injected at low pressures through boreholes to test the potential of fault re-activation. In addition, a high-pressure injection was conducted that created a hydraulic fracture from the injection borehole towards the artificial fault. The newly generated fluid pathway resulted in an activation of the complete block through a stick-slip movement. We compare acoustic emission measurements from the laboratory experiment with seismicity observations from the field-scale CO2 injection at Decatur, Illinois, U.S., and conclude that the existence of fluid pathways plays a decisive role for the potential of induced seismicity.

2.
Ground Water ; 43(5): 706-16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16149966

RESUMO

Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050.


Assuntos
Modelos Teóricos , Abastecimento de Água , Conservação dos Recursos Naturais , Previsões , Texas , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...