Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(48): 56365-56374, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988286

RESUMO

Conductive atomic force microscopy (CAFM) has become the preferred tool of many companies and academics to analyze the electronic properties of materials and devices at the nanoscale. This technique scans the surface of a sample using an ultrasharp conductive nanoprobe so that the contact area between them is very small (<100 nm2) and it can measure the properties of the sample with a very high lateral resolution. However, measuring relatively low currents (∼1 nA) in such small areas produces high current densities (∼1000 A/cm2), which almost always results in fast nanoprobe degradation. That is not only expensive but also endangers the reliability of the data collected because detecting which data sets are affected by tip degradation can be complex. Here, we show an inexpensive long-sought solution for this problem by using a current limitation system. We test its performance by measuring the tunneling current across a reference ultrathin dielectric when applying ramped voltage stresses at hundreds of randomly selected locations of its surface, and we conclude that the use of a current limitation system increases the lifetime of the tips by a factor of ∼50. Our work contributes to significantly enhance the reliability of one of the most important characterization techniques in the field of nanoelectronics.

2.
ACS Appl Mater Interfaces ; 15(17): 21602-21608, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083396

RESUMO

Conductive atomic force microscopy (CAFM) is a powerful technique to investigate electrical and mechanical properties of materials and devices at the nanoscale. However, its main challenge is the reliability of the probe tips and their interaction with the samples. The most common probe tips used in CAFM studies are made of Si coated with a thin (∼20 nm) film of Pt or Pt-rich alloys (such as Pt/Ir), but this can degrade fast due to high current densities (>102A/cm2) and mechanical frictions. Si tips coated with doped diamond and solid doped diamond tips are more durable, but they are significantly more expensive and their high stiffness often damages the surface of most samples. One growing alternative is to use solid Pt tips, which have an intermediate price and are expected to be more durable than metal-coated silicon tips. However, a thorough characterization of the performance of solid Pt probes for CAFM research has never been reported. In this article, we characterize the performance of solid Pt probes for nanoelectronics research by performing various types of experiments and compare them to Pt/Ir-coated Si probes. Our results indicate that solid Pt probes exhibit a lateral resolution that is very similar to that of Pt/Ir-coated Si probes but with the big advantage of a much longer lifetime. Moreover, the probe-to-probe deviation of the electrical data collected is small. The use of solid Pt probes can help researchers to enhance the reliability of their CAFM experiments.

4.
Adv Mater ; 32(34): e2002525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666564

RESUMO

Mechanically exfoliated 2D hexagonal boron nitride (h-BN) is currently the preferred dielectric material to interact with graphene and 2D transition metal dichalcogenides in nanoelectronic devices, as they form a clean van der Waals interface. However, h-BN has a low dielectric constant (≈3.9), which in ultrascaled devices results in high leakage current and premature dielectric breakdown. Furthermore, the synthesis of h-BN using scalable methods, such as chemical vapor deposition, requires very high temperatures (>900 °C) , and the resulting h-BN stacks contain abundant few-atoms-wide amorphous regions that decrease its homogeneity and dielectric strength. Here it is shown that ultrathin calcium fluoride (CaF2 ) ionic crystals could be an excellent solution to mitigate these problems. By applying >3000 ramped voltage stresses and several current maps at different locations of the samples via conductive atomic force microscopy, it is statistically demonstrated that ultrathin CaF2 shows much better dielectric performance (i.e., homogeneity, leakage current, and dielectric strength) than SiO2 , TiO2 , and h-BN. The main reason behind this behavior is that the cubic crystalline structure of CaF2 is continuous and free of defects over large regions, which prevents the formation of electrically weak spots.

5.
Materials (Basel) ; 13(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978971

RESUMO

Heat transfer processes in micro- and nanoscale devices have become more and more important during the last decades. Scanning thermal microscopy (SThM) is an atomic force microscopy (AFM) based method for analyzing local thermal conductivities of layers with thicknesses in the range of several nm to µm. In this work, we investigate ultrathin films of hexagonal boron nitride (h-BN), copper iodide in zincblende structure (γ-CuI) and some test sample structures fabricated of silicon (Si) and silicon dioxide (SiO2) using SThM. Specifically, we analyze and discuss the influence of the sample topography, the touching angle between probe tip and sample, and the probe tip temperature on the acquired results. In essence, our findings indicate that SThM measurements include artefacts that are not associated with the thermal properties of the film under investigation. We discuss possible ways of influence, as well as the magnitudes involved. Furthermore, we suggest necessary measuring conditions that make qualitative SThM measurements of ultrathin films of h-BN with thicknesses at or below 23 nm possible.

6.
Materials (Basel) ; 12(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717254

RESUMO

: Conductive atomic force microscopy (CAFM) is one of the most powerful techniques in studying the electrical properties of various materials at the nanoscale. However, understanding current fluctuations within one study (due to degradation of the probe tips) and from one study to another (due to the use of probe tips with different characteristics), are still two major problems that may drive CAFM researchers to extract wrong conclusions. In this manuscript, these two issues are statistically analyzed by collecting experimental CAFM data and processing them using two different computational models. Our study indicates that: (i) before their complete degradation, CAFM tips show a stable state with degraded conductance, which is difficult to detect and it requires CAFM tip conductivity characterization before and after the CAFM experiments; and (ii) CAFM tips with low spring constants may unavoidably lead to the presence of a ~1.2 nm thick water film at the tip/sample junction, even if the maximum contact force allowed by the setup is applied. These two phenomena can easily drive CAFM users to overestimate the properties of the samples under test (e.g., oxide thickness). Our study can help researchers to better understand the current shifts that were observed during their CAFM experiments, as well as which probe tip to use and how it degrades. Ultimately, this work may contribute to enhancing the reliability of CAFM investigations.

7.
Scanning ; 2017: 6286595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109823

RESUMO

For advanced atomic force microscopy (AFM) investigation of chemical surface modifications or very soft organic sample surfaces, the AFM probe tip needs to be operated in a liquid environment because any attractive or repulsive forces influenced by the measurement environment could obscure molecular forces. Due to fluid properties, the mechanical behavior of the AFM cantilever is influenced by the hydrodynamic drag force due to viscous friction with the liquid. This study provides a numerical model based on computational fluid dynamics (CFD) and investigates the hydrodynamic drag forces for different cantilever geometries and varying fluid conditions for Peakforce Tapping (PFT) in liquids. The developed model was verified by comparing the predicted values with published results of other researchers and the findings confirmed that drag force dependence on tip speed is essentially linear in nature. We observed that triangular cantilever geometry provides significant lower drag forces than rectangular geometry and that short cantilever offers reduced flow resistance. The influence of different liquids such as ultrapure water or an ethanol-water mixture as well as a temperature induced variation of the drag force could be demonstrated. The acting forces are lowest in ultrapure water, whereas with increasing ethanol concentrations the drag forces increase.

8.
Rev Sci Instrum ; 87(8): 083703, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587127

RESUMO

The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...