Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381071

RESUMO

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Assuntos
Proteínas de Ligação a DNA , Neurônios Motores , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Homeostase , Neurônios Motores/metabolismo , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
4.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551717

RESUMO

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Assuntos
Vasos Coronários , Células Endoteliais , Animais , Camundongos , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação da Expressão Gênica , Endotélio/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
5.
Sci Adv ; 9(34): eadh2501, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611093

RESUMO

Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17FNV). eSox17FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.


Assuntos
Células-Tronco Neurais , Humanos , Animais , Camundongos , Envelhecimento , Epigenômica , Perfilação da Expressão Gênica , Proteínas HMGB , Fatores de Transcrição SOXF/genética
6.
Cell Rep ; 42(5): 112322, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105170

RESUMO

Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor ß (PDGFRß) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Pericitos/metabolismo , Transdução de Sinais , Organoides/metabolismo
7.
EMBO J ; 42(5): e109032, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715213

RESUMO

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Regulação da Expressão Gênica , Endotélio Vascular , Fatores de Transcrição/metabolismo , Linfangiogênese/genética , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
8.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672963

RESUMO

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição SOX , Humanos , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Transcrição SOX/genética , Sequência de Aminoácidos , Dimerização , Genótipo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXE/genética
10.
Dev Dyn ; 251(2): 336-349, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34174014

RESUMO

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Assuntos
Vasos Linfáticos , Doenças Renais Policísticas , Animais , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Knockout , Morfogênese/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Proteína Quinase C , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
11.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874911

RESUMO

Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.


Assuntos
Atenolol/farmacologia , Hemangioma , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica , Propranolol/farmacologia , Animais , Hemangioma/irrigação sanguínea , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nucleic Acids Res ; 49(19): 10931-10955, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34570228

RESUMO

Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.


Assuntos
Glomerulonefrite/genética , Hipotricose/genética , Linfedema/genética , Fatores de Transcrição SOXF/genética , Telangiectasia/genética , Transcrição Gênica , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipotricose/metabolismo , Hipotricose/patologia , Luciferases/genética , Luciferases/metabolismo , Linfedema/metabolismo , Linfedema/patologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Mutação , Fatores de Transcrição SOXF/metabolismo , Imagem Individual de Molécula , Telangiectasia/metabolismo , Telangiectasia/patologia
13.
Cell Rep ; 36(3): 109395, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289351

RESUMO

Arteries and veins form in a stepwise process that combines vasculogenesis and sprouting angiogenesis. Despite extensive data on the mechanisms governing blood vessel assembly at the single-cell level, little is known about how collective cell migration contributes to the organization of the balanced distribution between arteries and veins. Here, we use an endothelial-specific zebrafish reporter, arteriobow, to label small cohorts of arterial cells and trace their progeny from early vasculogenesis throughout arteriovenous remodeling. We reveal that the genesis of arteries and veins relies on the coordination of 10 types of collective cell dynamics. Within these behavioral categories, we identify a heterogeneity of collective cell motion specific to either arterial or venous remodeling. Using pharmacological blockade, we further show that cell-intrinsic Notch signaling and cell-extrinsic blood flow act as regulators in maintaining the heterogeneity of collective endothelial cell behavior, which, in turn, instructs the future territory of arteriovenous remodeling.


Assuntos
Artérias/fisiologia , Rastreamento de Células , Células Endoteliais/citologia , Remodelação Vascular/fisiologia , Veias/fisiologia , Animais , Animais Geneticamente Modificados , Células Clonais , Células Endoteliais/metabolismo , Genes Reporter , Receptores Notch/metabolismo , Fluxo Sanguíneo Regional , Reologia , Transdução de Sinais , Peixe-Zebra
14.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080610

RESUMO

The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.


Assuntos
Sistema Cardiovascular/crescimento & desenvolvimento , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Animais , Sistema Cardiovascular/citologia , Sistema Cardiovascular/embriologia , Células Endoteliais/fisiologia , Homeostase , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Transdução de Sinais
15.
Nat Commun ; 12(1): 2564, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963183

RESUMO

Endothelial to mesenchymal transition (EndMT) is a leading cause of fibrosis and disease, however its mechanism has yet to be elucidated. The endothelium possesses a profound regenerative capacity to adapt and reorganize that is attributed to a population of vessel-resident endovascular progenitors (EVP) governing an endothelial hierarchy. Here, using fate analysis, we show that two transcription factors SOX9 and RBPJ specifically affect the murine EVP numbers and regulate lineage specification. Conditional knock-out of Sox9 from the vasculature (Sox9fl/fl/Cdh5-CreER RosaYFP) depletes EVP while enhancing Rbpj expression and canonical Notch signalling. Additionally, skin wound analysis from Sox9 conditional knock-out mice demonstrates a significant reduction in pathological EndMT resulting in reduced scar area. The converse is observed with Rbpj conditionally knocked-out from the murine vasculature (Rbpjfl/fl/Cdh5-CreER RosaYFP) or inhibition of Notch signaling in human endothelial colony forming cells, resulting in enhanced Sox9 and EndMT related gene (Snail, Slug, Twist1, Twist2, TGF-ß) expression. Similarly, increased endothelial hedgehog signaling (Ptch1fl/fl/Cdh5-CreER RosaYFP), that upregulates the expression of Sox9 in cells undergoing pathological EndMT, also results in excess fibrosis. Endothelial cells transitioning to a mesenchymal fate express increased Sox9, reduced Rbpj and enhanced EndMT. Importantly, using topical administration of siRNA against Sox9 on skin wounds can substantially reduce scar area by blocking pathological EndMT. Overall, here we report distinct fates of EVPs according to the relative expression of Rbpj or Notch signalling and Sox9, highlighting their potential plasticity and opening exciting avenues for more effective therapies in fibrotic diseases.


Assuntos
Células Endoteliais/metabolismo , Endotélio/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula , Endotélio/citologia , Feminino , Técnicas de Inativação de Genes , Proteínas Hedgehog/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno , Receptores Notch/metabolismo , Fatores de Transcrição SOX9/genética , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/genética
16.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154111

RESUMO

Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type-specific gene regulatory networks across the animal kingdom.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Poríferos/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Humanos , Camundongos , Peixe-Zebra/genética
17.
Cancer Res ; 80(15): 3116-3129, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32518203

RESUMO

Kaposi sarcoma is a tumor caused by Kaposi sarcoma herpesvirus (KSHV) infection and is thought to originate from lymphatic endothelial cells (LEC). While KSHV establishes latency in virtually all susceptible cell types, LECs support spontaneous expression of oncogenic lytic genes, high viral genome copies, and release of infectious virus. It remains unknown the contribution of spontaneous virus production to the expansion of KSHV-infected tumor cells and the cellular factors that render the lymphatic environment unique to KSHV life cycle. We show here that expansion of the infected cell population, observed in LECs, but not in blood endothelial cells, is dependent on the spontaneous virus production from infected LECs. The drivers of lymphatic endothelium development, SOX18 and PROX1, regulated different steps of the KSHV life cycle. SOX18 enhanced the number of intracellular viral genome copies and bound to the viral origins of replication. Genetic depletion or chemical inhibition of SOX18 caused a decrease of KSHV genome copy numbers. PROX1 interacted with ORF50, the viral initiator of lytic replication, and bound to the KSHV genome in the promoter region of ORF50, increasing its transactivation activity and KSHV spontaneous lytic gene expression and infectious virus release. In Kaposi sarcoma tumors, SOX18 and PROX1 expression correlated with latent and lytic KSHV protein expression. These results demonstrate the importance of two key transcriptional drivers of LEC fate in the regulation of the tumorigenic KSHV life cycle. Moreover, they introduce molecular targeting of SOX18 as a potential novel therapeutic avenue in Kaposi sarcoma. SIGNIFICANCE: SOX18 and PROX1, central regulators of lymphatic development, are key factors for KSHV genome maintenance and lytic cycle in lymphatic endothelial cells, supporting Kaposi sarcoma tumorigenesis and representing attractive therapeutic targets.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Humano 8/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição SOXF/fisiologia , Sarcoma de Kaposi/genética , Proteínas Supressoras de Tumor/fisiologia , Replicação Viral/genética , Carcinogênese/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Proteínas de Homeodomínio/genética , Humanos , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Sistema Linfático/virologia , Fatores de Transcrição SOXF/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Proteínas Supressoras de Tumor/genética
18.
Dev Dyn ; 249(10): 1201-1216, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525258

RESUMO

BACKGROUND: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS: We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.


Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Fator de Transcrição MafB/fisiologia , Animais , Sistemas CRISPR-Cas , Cruzamentos Genéticos , Genoma , Genótipo , Hibridização In Situ , Camundongos , Camundongos Knockout , Mutação , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
19.
J Dermatol Sci ; 98(3): 179-185, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32444239

RESUMO

BACKGROUND: Basal Cell Carcinoma is the most common tumour and yet much remains to be determined regarding the molecular mechanisms that leads to its development. Hedgehog signal activation is sufficient for BCC induction, but the molecular mediators of BCC growth are not well understood. SoxF transcription factor Sox18 has been identified in human BCC, but its role in growth of the tumour is as yet unknown. OBJECTIVE: To determine if Sox18 is involved in the regulation of Basal Cell Carcinoma growth. METHODS: We analysed the function of Sox18 by combining a dominant negative Sox18 mouse model, Sox18+/OP with murine BCC RESULTS: We determine that Sox18 is ectopically expressed in the epidermal cells of a murine model of Basal Cell Carcinoma. We then show that dominant negative mutation of Sox18 increases the severity of murine Basal Cell Carcinoma. Finally, decreased Hey1 in Sox18+/OP BCC suggests Sox18 may negatively regulate BCC progression via Notch signaling. CONCLUSIONS: These data suggest that Sox18 is a hedgehog regulated mediator of tumour suppression within Basal Cell Carcinoma epidermis.


Assuntos
Carcinoma Basocelular/genética , Epiderme/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXF/metabolismo , Neoplasias Cutâneas/genética , Animais , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patologia , Modelos Animais de Doenças , Expressão Ectópica do Gene , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Receptor Patched-1/genética , Receptores Notch/metabolismo , Fatores de Transcrição SOXF/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
20.
Semin Cell Dev Biol ; 99: 12-19, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30172762

RESUMO

Biophysical parameters that govern transcription factors activity are binding locations across the genome, dwelling time at these regulatory elements and specific protein-protein interactions. Most molecular strategies used to develop small compounds that block transcription factors activity have been based on biochemistry and cell biology methods that that do not take into consideration these key biophysical features. Here, we review the advance in the field of transcription factor biology and describe how their interactome and transcriptional regulation on a genome wide scale have been deciphered. We suggest that this new knowledge has the potential to be used to implement innovative research drug discovery program.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Humanos , Ligação Proteica , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...