Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4376-4418, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488755

RESUMO

In 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs. Ten additional drugs approved in 2021 and one approved in 2020 are included that were not covered in the previous year's review.


Assuntos
Aprovação de Drogas , Estados Unidos , Japão , United States Food and Drug Administration , China
2.
J Med Chem ; 66(15): 10150-10201, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528515

RESUMO

Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.


Assuntos
Desenho de Fármacos , Humanos , Preparações Farmacêuticas , Imunoconjugados/química
3.
JACS Au ; 3(3): 715-735, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006753

RESUMO

Biocatalysis is a highly valued enabling technology for pharmaceutical research and development as it can unlock synthetic routes to complex chiral motifs with unparalleled selectivity and efficiency. This perspective aims to review recent advances in the pharmaceutical implementation of biocatalysis across early and late-stage development with a focus on the implementation of processes for preparative-scale syntheses.

4.
ACS Catal ; 13(3): 1669-1677, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36776386

RESUMO

Imine reductases (IREDs) catalyze the asymmetric reduction of cyclic imines, but also in some cases the coupling of ketones and amines to form secondary amine products in an enzyme-catalyzed reductive amination (RedAm) reaction. Enzymatic RedAm reactions have typically used small hydrophobic amines, but many interesting pharmaceutical targets require that larger amines be used in these coupling reactions. Following the identification of IR77 from Ensifer adhaerens as a promising biocatalyst for the reductive amination of cyclohexanone with pyrrolidine, we have characterized the ability of this enzyme to catalyze couplings with larger bicyclic amines such as isoindoline and octahydrocyclopenta(c)pyrrole. By comparing the activity of IR77 with reductions using sodium cyanoborohydride in water, it was shown that, while the coupling of cyclohexanone and pyrrolidine involved at least some element of reductive amination, the amination with the larger amines likely occurred ex situ, with the imine recruited from solution for enzyme reduction. The structure of IR77 was determined, and using this as a basis, structure-guided mutagenesis, coupled with point mutations selecting improving amino acid sites suggested by other groups, permitted the identification of a mutant A208N with improved activity for amine product formation. Improvements in conversion were attributed to greater enzyme stability as revealed by X-ray crystallography and nano differential scanning fluorimetry. The mutant IR77-A208N was applied to the preparative scale amination of cyclohexanone at 50 mM concentration, with 1.2 equiv of three larger amines, in isolated yields of up to 93%.

5.
J Med Chem ; 65(14): 9607-9661, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833579

RESUMO

New drugs introduced to the market are privileged structures that have affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates (ADCs), provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This Review is part of a continuing series presenting the most likely process-scale synthetic approaches to 44 new chemical entities approved for the first time anywhere in the world during 2020.


Assuntos
Desenho de Fármacos , Imunoconjugados , Humanos
6.
Zootaxa ; 5093(3): 337-375, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35391483

RESUMO

The systematics of bamboo corals of the Family Keratoisididae are evaluated using both DNA sequences and morphological data. Sequence data were obtained from 398 specimens, from which 77 unique haplotypes representing the mtMutS and 18S gene regions were identified. These were aligned with sequences downloaded from GenBank from an additional 12 keratoisids and 6 octocoral outgroups. Phylogenetic analyses recovered seven well-supported major clades, the most recently derived of which consists of several subclades. Each clade and subclade can be characterized by a suite of morphological characters that include axis construction, branching pattern, polyp form, and sclerite type and arrangement. This analysis also shows that keratoisid genera described >100 years ago are paraphyletic and need revision and that a large number of new genera will need to be described.


Assuntos
Antozoários , Animais , Filogenia , Análise de Sequência de DNA
7.
Zootaxa ; 5047(3): 247-272, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810847

RESUMO

Bamboo corals are distinguished from most other octocorals by an articulated skeleton. The nodes are proteinaceous and sclerite-free while the internodes are composed of non-scleritic calcium carbonate. This articulation of the skeleton was thought to be unique and a strong synapomorphy for the family Isididae. Our phylogeny, based on the amplification of mtMutS and 18S, shows an articulating skeleton with sclerite-free nodes has arisen independently at least five times during the evolutionary history of Octocorallia rather than being a synapomorphy characteristic of a monophyletic bamboo coral clade. The family Isididae is currently composed of four subfamilies (Circinisidinae, Isidinae, Keratoisidinae, and Mopseinae). Not only is the family polyphyletic, but our genetic analyses suggest also the subfamily Isidinae is polyphyletic based on current taxonomic classifications, and Mopseinae is not monophyletic. The type, Isis, is found outside of the well-supported Calcaxonia Pennatulacea clade where the other members of Isididae cluster. The current classification of the family Isididae does not reflect the evolutionary history of an articulated skeleton. To better reflect the evolutionary history of these taxa we propose that three of the four the subfamilies, the genus Isidoides, and genera within the subfamily Isidinae, be elevated to family level to produce a classification with five families with a bamboo-like skeleton: Chelidonisididae, Isididae, Isidoidae, Keratoisididae, and Mopseidae.


Assuntos
Antozoários , Animais , Antozoários/genética , Filogenia , Análise de Sequência de DNA
8.
J Med Chem ; 64(7): 3604-3657, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33783211

RESUMO

New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.


Assuntos
Técnicas de Química Sintética/métodos , Compostos Orgânicos/síntese química , Preparações Farmacêuticas/síntese química , Animais , Humanos
9.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356244

RESUMO

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Assuntos
Anemia Falciforme/tratamento farmacológico , Hemoglobina A/efeitos dos fármacos , Hemoglobina Falciforme/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Animais , Eritrócitos/metabolismo , Camundongos , Oxigênio/metabolismo , Quinolinas/química
10.
J Am Chem Soc ; 141(49): 19208-19213, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31743008

RESUMO

Ene-reductases (EREDs) catalyze the reduction of electron-deficient C═C bonds. Herein, we report the first example of ERED-catalyzed net reduction of C═C bonds of enimines (α,ß-unsaturated imines). Preliminary studies suggest their hydrolyzed ring-open ω-amino enones are the likely substrates for this step. When combined with imine reductase (IRED)-mediated C═N reduction, the result is an efficient telescoped sequence for the preparation of diastereomerically enriched 2-substituted saturated amine heterocycles.


Assuntos
Biocatálise , Compostos Heterocíclicos/síntese química , Iminas/química , Oxirredutases/química , Compostos Heterocíclicos/química , Estrutura Molecular , Oxirredução , Estereoisomerismo
11.
J Biotechnol ; 304: 78-88, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430498

RESUMO

Carboxylic acid reductases (CARs) are an emerging biocatalyst platform for the synthesis of a diverse array of aldehydes from carboxylic acids, operating chemoselectively and under mild aqueous conditions. As such, there is growing interest in the industrial application of these enzymes, both for the synthesis of aldehyde end-products, which are particularly prevalent in the flavor and fragrance industries, and aldehyde intermediates in multi-enzyme cascades. This perspective aims to review recent developments in the applications of CARs with a focus on the challenges and considerations involved in their implementation, as well as potential solutions with a view to increased industrial utility.


Assuntos
Oxirredutases/metabolismo , Engenharia de Proteínas/métodos , Aldeídos/metabolismo , Reatores Biológicos/microbiologia , Ácidos Carboxílicos/metabolismo , Odorantes , Oxirredutases/genética
12.
Methods Enzymol ; 608: 131-149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30173761

RESUMO

Synthesis of the chiral amine moiety is a key challenge for synthetic organic chemistry due to its prevalence in many biologically active molecules. Imine reductase and amine oxidase enzymes have enabled the biocatalytic synthesis of a host of chiral amine compounds. In this chapter, procedures for the synthesis of chiral amines using imine reductases (IREDs), the recently discovered IRED homologues reductive aminases, and amine oxidases (AOs) are described. Amine oxidases have been the subject of mutagenesis approaches for improvement of substrate scope. The high-throughput screening method for determining active variants in amine oxidase libraries is illustrated. Finally, in an approach which takes inspiration from nature, many enzymes can be combined with each other in cascade reactions. The incorporation of imine reductase and monoamine oxidase biocatalysts into several cascade reactions, both in vitro and in vivo (where the approach moves toward synthetic biology), is reported.


Assuntos
Aminas/metabolismo , Aminoidrolases/metabolismo , Bactérias/enzimologia , Fungos/enzimologia , Monoaminoxidase/metabolismo , Oxirredutases/metabolismo , Engenharia de Proteínas/métodos , Aminas/química , Aminoidrolases/genética , Aspergillus niger/enzimologia , Aspergillus niger/genética , Aspergillus niger/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biocatálise , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos/genética , Fungos/metabolismo , Iminas/química , Iminas/metabolismo , Monoaminoxidase/genética , Oxirredução , Oxirredutases/genética , Estereoisomerismo , Streptomyces/enzimologia , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética/métodos
13.
Angew Chem Int Ed Engl ; 56(49): 15589-15593, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29024400

RESUMO

Biocatalytic retrosynthetic analysis of dibenz[c,e]azepines has highlighted the use of imine reductase (IRED) and ω-transaminase (ω-TA) biocatalysts to establish the key stereocentres of these molecules. Several enantiocomplementary IREDs were identified for the synthesis of (R)- and (S)-5-methyl-6,7-dihydro-5H-dibenz[c,e]azepine with excellent enantioselectivity, by reduction of the parent imines. Crystallographic evidence suggests that IREDs may be able to bind one conformer of the imine substrate such that, upon reduction, the major product conformer is generated directly. ω-TA biocatalysts were also successfully employed for the production of enantiopure 1-(2-bromophenyl)ethan-1-amine, thus enabling an orthogonal route for the installation of chirality into dibenz[c,e]azepine framework.


Assuntos
Azepinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Transaminases/metabolismo , Azepinas/química , Biocatálise , Estrutura Molecular , Estereoisomerismo
14.
Nat Chem ; 9(10): 961-969, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28937665

RESUMO

Reductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion. Steady-state kinetic studies establish that the enzyme is capable of catalysing imine formation as well as reduction. Crystal structures of AspRedAm in complex with NADP(H) and also with both NADP(H) and the pharmaceutical ingredient (R)-rasagiline are reported. We also demonstrate preparative scale reductive aminations with wild-type and Q240A variant biocatalysts displaying total turnover numbers of up to 32,000 and space time yields up to 3.73 g l-1 d-1.


Assuntos
Aminas/metabolismo , Aminoidrolases/metabolismo , Aspergillus oryzae/enzimologia , Aminação , Aminoidrolases/química , Aminoidrolases/genética , Biocatálise , Modelos Moleculares , Estrutura Molecular , Mutação , Oxirredução
15.
Zookeys ; (646): 17-23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228673

RESUMO

Using the remotely operated vehicle Deep Discoverer, we observed a large stylodactylid shrimp resting on a sedimented sea floor at 4826 m in the Marianas Trench Marine National Monument. The shrimp was not collected but most closely resembled Bathystylodactylus bathyalis, known previously only from a single broken specimen. Video footage shows the shrimp facing into the current and extending its upraised and fringed first and second pereopods, presumably capturing passing particles. The video footage is the first ever to show a living deep-sea stylodactylid and constitutes the deepest record for the family. We provide a list of the deepest reports of caridean shrimps world-wide.

16.
Curr Opin Chem Biol ; 37: 19-25, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28038349

RESUMO

Imine reductases (IREDs) have emerged as a valuable new set of biocatalysts for the asymmetric synthesis of optically active amines. The development of bioinformatics tools and searchable databases has led to the identification of a diverse range of new IRED biocatalysts that have been characterised and employed in different synthetic processes. This review describes the latest developments in the structural and mechanistic aspects of IREDs, together with synthetic applications of these enzymes, and identifies ongoing and future challenges in the field.


Assuntos
Iminas/metabolismo , Oxirredutases/metabolismo , Aminação , Biocatálise , Oxirredução , Oxirredutases/química
17.
Front Microbiol ; 7: 458, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092120

RESUMO

Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

18.
PLoS One ; 10(10): e0139068, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465609

RESUMO

Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.


Assuntos
Antozoários/classificação , Cubomedusas/classificação , Hidrozoários/classificação , Myxozoa/classificação , Filogenia , Cifozoários/classificação , Animais , Antozoários/genética , Teorema de Bayes , Evolução Biológica , Cubomedusas/genética , Hidrozoários/genética , Myxozoa/genética , Cifozoários/genética , Transcriptoma
19.
PLoS One ; 10(10): e0139904, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509818

RESUMO

The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.


Assuntos
Ecossistema , Animais , Antozoários , Biodiversidade , Recifes de Corais , New England
20.
ChemCatChem ; 7(4): 579-583, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27547270

RESUMO

Although the range of biocatalysts available for the synthesis of enantiomerically pure chiral amines continues to expand, few existing methods provide access to secondary amines. To address this shortcoming, we have over-expressed the gene for an (R)-imine reductase [(R)-IRED] from Streptomyces sp. GF3587 in Escherichia coli to create a recombinant whole-cell biocatalyst for the asymmetric reduction of prochiral imines. The (R)-IRED was screened against a panel of cyclic imines and two iminium ions and was shown to possess high catalytic activity and enantioselectivity. Preparative-scale synthesis of the alkaloid (R)-coniine (90 % yield; 99 % ee) from the imine precursor was performed on a gram-scale. A homology model of the enzyme active site, based on the structure of a closely related (R)-IRED from Streptomyces kanamyceticus, was constructed and used to identify potential amino acids as targets for mutagenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...