Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
J Am Chem Soc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958264

RESUMO

Boronic acids and esters are highly regarded for their safety, unique reactivity, and versatility in synthesizing a wide range of small molecules, bioconjugates, and materials. They are not exploited in biocatalytic synthesis, however, because enzymes that can make, break, or modify carbon-boron bonds are rare. We wish to combine the advantages of boronic acids and esters for molecular assembly with biocatalysis, which offers the potential for unsurpassed selectivity and efficiency. Here, we introduce an engineered protoglobin nitrene transferase that catalyzes the new-to-nature amination of boronic acids using hydroxylamine. Initially targeting aryl boronic acids, we show that the engineered enzyme can produce a wide array of anilines with high yields and total turnover numbers (up to 99% yield and >4000 TTN), with water and boric acid as the only byproducts. We also demonstrate that the enzyme is effective with bench-stable boronic esters, which hydrolyze in situ to their corresponding boronic acids. Exploring the enzyme's capacity for enantioselective catalysis, we found that a racemic alkyl boronic ester affords an enantioenriched alkyl amine, a transformation not achieved with chemocatalysts. The formation of an exclusively unrearranged product during the amination of a boronic ester radical clock and the reaction's stereospecificity support a two-electron process akin to a 1,2-metallate shift mechanism. The developed transformation enables new biocatalytic routes for synthesizing chiral amines.

2.
Nat Chem Biol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744987

RESUMO

Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the ß-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.

3.
medRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699311

RESUMO

Importance: Posttraumatic stress disorder (PTSD) is a prevalent mental health problem that increases risk of cardiovascular disease (CVD). It is not known whether gender or comorbidities modify associations between PTSD and CVD. Objective: To assess risk of hypertension and atherosclerotic CVD (ASCVD) associated with PTSD in a predominantly young military population, and determine if gender or PTSD comorbidities modify these associations. Design setting and participants: Using administrative medical records, this longitudinal, retrospective cohort study assessed relationships of PTSD, gender, comorbidities (metabolic risk factors [MRF], behavioral risk factors [BRF], depression, and sleep disorders) to subsequent hypertension and ASCVD among 863,993 active-duty U.S. Army enlisted soldiers (86.2% male; 93.7%

4.
ACS Cent Sci ; 10(2): 226-241, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435522

RESUMO

Enzymes can be engineered at the level of their amino acid sequences to optimize key properties such as expression, stability, substrate range, and catalytic efficiency-or even to unlock new catalytic activities not found in nature. Because the search space of possible proteins is vast, enzyme engineering usually involves discovering an enzyme starting point that has some level of the desired activity followed by directed evolution to improve its "fitness" for a desired application. Recently, machine learning (ML) has emerged as a powerful tool to complement this empirical process. ML models can contribute to (1) starting point discovery by functional annotation of known protein sequences or generating novel protein sequences with desired functions and (2) navigating protein fitness landscapes for fitness optimization by learning mappings between protein sequences and their associated fitness values. In this Outlook, we explain how ML complements enzyme engineering and discuss its future potential to unlock improved engineering outcomes.

5.
Fam Process ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533758

RESUMO

Relational savoring (RS) is a brief, strengths-based approach to heightening attentional focus to moments of positive connectedness within relationships. RS can be administered preventatively or within an intervention context when a therapist aspires to foster more optimal relational functioning. Typically administered within a one-on-one therapy setting, RS has demonstrated efficacy in enhancing intra- and interpersonal outcomes. To increase access to mental health services, the developers of RS are committed to engaging in an iterative approach of enhancing the cultural congruence and accessibility of this intervention within various cultural contexts, beginning with Latine groups in Southern California. In this article, we describe relational savoring and its theoretical and empirical support, including the process of culturally adapting the intervention within the context of three major studies, each with a distinct focus on Latine groups, a community that is underserved in mental health care settings. We then provide a vision for future research to improve upon the intervention's compatibility for Latine families and other populations.

6.
J Clin Sleep Med ; 20(6): 921-931, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300822

RESUMO

STUDY OBJECTIVES: The standard of care for military personnel with insomnia is cognitive behavioral therapy for insomnia (CBT-I). However, only a minority seeking insomnia treatment receive CBT-I, and little reliable guidance exists to identify those most likely to respond. As a step toward personalized care, we present results of a machine learning (ML) model to predict CBT-I response. METHODS: Administrative data were examined for n = 1,449 nondeployed US Army soldiers treated for insomnia with CBT-I who had moderate-severe baseline Insomnia Severity Index (ISI) scores and completed 1 or more follow-up ISIs 6-12 weeks after baseline. An ensemble ML model was developed in a 70% training sample to predict clinically significant ISI improvement (reduction of at least 2 standard deviations on the baseline ISI distribution). Predictors included a wide range of military administrative and baseline clinical variables. Model accuracy was evaluated in the remaining 30% test sample. RESULTS: 19.8% of patients had clinically significant ISI improvement. Model area under the receiver operating characteristic curve (standard error) was 0.60 (0.03). The 20% of test-sample patients with the highest probabilities of improvement were twice as likely to have clinically significant improvement compared with the remaining 80% (36.5% vs 15.7%; χ21 = 9.2, P = .002). Nearly 85% of prediction accuracy was due to 10 variables, the most important of which were baseline insomnia severity and baseline suicidal ideation. CONCLUSIONS: Pending replication, the model could be used as part of a patient-centered decision-making process for insomnia treatment. Parallel models will be needed for alternative treatments before such a system is of optimal value. CITATION: Gabbay FH, Wynn GH, Georg MW, et al. Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia. J Clin Sleep Med. 2024;20(6):921-931.


Assuntos
Terapia Cognitivo-Comportamental , Aprendizado de Máquina , Militares , Medicina de Precisão , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Terapia Cognitivo-Comportamental/métodos , Terapia Cognitivo-Comportamental/estatística & dados numéricos , Militares/estatística & dados numéricos , Militares/psicologia , Masculino , Feminino , Adulto , Estados Unidos , Medicina de Precisão/métodos , Resultado do Tratamento
8.
Science ; 383(6681): 438-443, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271505

RESUMO

Volatile methylsiloxanes (VMS) are man-made, nonbiodegradable chemicals produced at a megaton-per-year scale, which leads to concern over their potential for environmental persistence, long-range transport, and bioaccumulation. We used directed evolution to engineer a variant of bacterial cytochrome P450BM3 to break silicon-carbon bonds in linear and cyclic VMS. To accomplish silicon-carbon bond cleavage, the enzyme catalyzes two tandem oxidations of a siloxane methyl group, which is followed by putative [1,2]-Brook rearrangement and hydrolysis. Discovery of this so-called siloxane oxidase opens possibilities for the eventual biodegradation of VMS.

9.
J Am Chem Soc ; 146(2): 1580-1587, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166100

RESUMO

Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature's strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C-O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-to-nature C-C bond-forming strategy to assemble diverse lactone structures. These engineered "carbene transferases" catalyze intramolecular carbene insertions into benzylic or allylic C-H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C-H functionalization.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lactonas , Lactonas/química , Catálise , Sistema Enzimático do Citocromo P-450/química , Metano
10.
J Am Chem Soc ; 146(5): 2959-2966, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270588

RESUMO

The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.


Assuntos
Diazometano , Heme , Metano/análogos & derivados , Heme/química , Modelos Moleculares , Ferro , Ciclopropanos/química , Catálise
11.
Methods Enzymol ; 693: 1-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37977727

RESUMO

Functionalizing inert C-H bonds selectively is a formidable task due to their strong bond energy and the difficulty of distinguishing chemically similar C-H bonds. While enzymatic oxygenation of C-H bonds is ubiquitous and well established, there is currently no known natural enzymatic process for direct nitrogen insertion. Instead, nature typically relies on pre-oxidized compounds for nitrogen incorporation. Direct biocatalytic C-H amination methods developed in the last few years are only selective for activated C-H bonds that contain specific groups such as benzylic, allylic, or propargylic groups. However, we recently used directed evolution to generate cytochrome P411 enzymes (engineered P450 enzymes with axial ligand mutation from cysteine to serine) that directly aminate inert C-H bonds with high site-, diastereo-, and enantioselectivity. Using these enzymes, we demonstrated the regiodivergent desymmetrization of methylcyclohexane, among other reactions. This chapter provides a comprehensive account of the experimental protocols used to evolve P411s for aminating unactivated C-H bonds. These methods are illustrative and can be adapted for other directed enzyme evolution campaigns.


Assuntos
Cisteína , Sistema Enzimático do Citocromo P-450 , Aminação , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Cisteína/metabolismo , Nitrogênio/química
12.
Methods Enzymol ; 693: 375-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37977737

RESUMO

Volatile methylsiloxanes (VMS) are a class of non-biodegradable anthropogenic compounds with propensity for long-range transport and potential for bioaccumulation in the environment. As a proof-of-principle for biological degradation of these compounds, we engineered P450 enzymes to oxidatively cleave Si-C bonds in linear and cyclic VMS. Enzymatic reactions with VMS are challenging to screen with conventional tools, however, due to their volatility, poor aqueous solubility, and tendency to extract polypropylene from standard 96-well deep-well plates. To address these challenges, we developed a new biocatalytic reactor consisting of individual 2-mL glass shells assembled in conventional 96-well plate format. In this chapter, we provide a detailed account of the assembly and use of the 96-well glass shell reactors for screening biocatalytic reactions. Additionally, we discuss the application of GC/MS analysis techniques for VMS oxidase reactions and modified procedures for validating improved variants. This protocol can be adopted broadly for biocatalytic reactions with substrates that are volatile or not suitable for polypropylene plates.


Assuntos
Polipropilenos , Siloxanas , Siloxanas/análise , Siloxanas/química , Água/química , Reatores Biológicos , Vidro
13.
J Am Chem Soc ; 145(37): 20196-20201, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671894

RESUMO

Hydroxylamine-derived reagents have enabled versatile nitrene transfer reactions for introducing nitrogen-containing functionalities in small-molecule catalysis, as well as biocatalysis. These reagents, however, result in a poor atom economy and stoichiometric organic waste. Activating hydroxylamine (NH2OH) for nitrene transfer offers a low-cost and sustainable route to amine synthesis, since water is the sole byproduct. Despite its presence in nature, hydroxylamine is not known to be used for enzymatic nitrogen incorporation in biosynthesis. Here, we report an engineered heme enzyme that can utilize hydroxylammonium chloride, an inexpensive commodity chemical, for nitrene transfer. Directed evolution of Pyrobaculum arsenaticum protoglobin generated efficient enzymes for benzylic C-H primary amination and styrene aminohydroxylation. Mechanistic studies supported a stepwise radical pathway involving rate-limiting hydrogen atom transfer. This unprecedented activity is a useful addition to the "nitrene transferase" repertoire and hints at possible future discovery of natural enzymes that use hydroxylamine for amination chemistry.


Assuntos
Hidroxilaminas , Nitrogênio , Hidroxilamina , Aminação
15.
N Z Med J ; 136(1579): 36-48, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37501243

RESUMO

AIM: Recent studies have shown that women training in surgical and procedural specialties achieve less operative autonomy during training than men do. The aim of this study was to discern if there is a disparity in surgical autonomy for orthopaedic trainees by gender. METHODS: This was a retrospective study of operative procedures performed by 53 orthopaedic trainees (43 men, 10 women) in Aotearoa New Zealand over 10 years. The main outcome measure was the amount of surgical autonomy afforded to individual trainees as recorded in the training logbook, categorised as assisting a: primary surgeon with consultant scrubbed or present; or, primary surgeon unsupervised and teaching a colleague the procedure. RESULTS: Data was obtained for 41,622 procedures in total. Eighty point seven percent were performed by men and 19.3% by women. On average men performed 229 cases per year and women performed 251 cases per year. There was an overall significant difference in autonomy between men and women (p <0.001), with men performing more procedures unsupervised than women (45% of all cases versus 39% of all cases). This difference remained significant when trainee year group was accounted for. CONCLUSIONS: We conclude that women orthopaedic trainees in Aotearoa New Zealand perform fewer cases with meaningful autonomy than men. This disparity may have implications for the quality of training received by men versus women.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Masculino , Humanos , Feminino , Estudos Retrospectivos , Nova Zelândia , Avaliação de Resultados em Cuidados de Saúde , Competência Clínica
16.
Vaccine ; 41(38): 5535-5544, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37516574

RESUMO

The ability of a third dose of the Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine to stimulate immune responses against subvariants, including Omicron BA.1, has not been assessed in New Zealand populations. Unlike many overseas populations, New Zealanders were largely infection naïve at the time they were boosted. This adult cohort of 298 participants, oversampled for at-risk populations, was composed of 29% Maori and 28% Pacific peoples, with 40% of the population aged 55+. A significant proportion of the cohort was obese and presented with at least one comorbidity. Sera were collected 28 days and 6 months post second vaccination and 28 days post third vaccination. SARS-CoV-2 anti-S IgG titres and neutralising capacity using surrogate viral neutralisation assays against variants of concern, including Omicron BA.1, were investigated. The incidence of SARS-CoV-2 infection, within our cohort, prior to third vaccination was very low (<6%). This study found a third vaccine significantly increased the mean SARS-CoV-2 anti-S IgG titres, for every demographic subgroup, by a minimum of 1.5-fold compared to titres after two doses. Diabetic participants experienced a greater increase (∼4-fold) in antibody titres after their third vaccination, compared to non-diabetics (increase of âˆ¼ 2-fold). This corrected for the deficiency in antibody titres within diabetic participants which was observed following two doses. A third dose also induced a neutralising response against Omicron variant BA.1, which was absent after two doses. This neutralising response improved regardless of age, BMI, ethnicity, or diabetes status. Participants aged ≥75 years consistently had the lowest SARS-CoV-2 anti-S IgG titres at each timepoint, however experienced the greatest improvement after three doses compared to younger participants. This study shows that in the absence of prior SARS-CoV-2 infection, a third Pfizer-BioNTech BNT162b2 vaccine enhances immunogenicity, including against Omicron BA.1, in a cohort representative of at-risk groups in the adult New Zealand population.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina G , Povo Maori , Nova Zelândia/epidemiologia , SARS-CoV-2 , Vacinação , Pessoa de Meia-Idade , População das Ilhas do Pacífico , Imunogenicidade da Vacina
17.
J Am Chem Soc ; 145(29): 16176-16185, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433085

RESUMO

In nature and synthetic chemistry, stereoselective [2 + 1] cyclopropanation is the most prevalent strategy for the synthesis of chiral cyclopropanes, a class of key pharmacophores in pharmaceuticals and bioactive natural products. One of the most extensively studied reactions in the organic chemist's arsenal, stereoselective [2 + 1] cyclopropanation, largely relies on the use of stereodefined olefins, which can require elaborate laboratory synthesis or tedious separation to ensure high stereoselectivity. Here, we report engineered hemoproteins derived from a bacterial cytochrome P450 that catalyze the synthesis of chiral 1,2,3-polysubstituted cyclopropanes, regardless of the stereopurity of the olefin substrates used. Cytochrome P450BM3 variant P411-INC-5185 exclusively converts (Z)-enol acetates to enantio- and diastereoenriched cyclopropanes and in the model reaction delivers a leftover (E)-enol acetate with 98% stereopurity, using whole Escherichia coli cells. P411-INC-5185 was further engineered with a single mutation to enable the biotransformation of (E)-enol acetates to α-branched ketones with high levels of enantioselectivity while simultaneously catalyzing the cyclopropanation of (Z)-enol acetates with excellent activities and selectivities. We conducted docking studies and molecular dynamics simulations to understand how active-site residues distinguish between the substrate isomers and enable the enzyme to perform these distinct transformations with such high selectivities. Computational studies suggest the observed enantio- and diastereoselectivities are achieved through a stepwise pathway. These biotransformations streamline the synthesis of chiral 1,2,3-polysubstituted cyclopropanes from readily available mixtures of (Z/E)-olefins, adding a new dimension to classical cyclopropanation methods.


Assuntos
Ciclopropanos , Sistema Enzimático do Citocromo P-450 , Ciclopropanos/química , Estereoisomerismo , Sistema Enzimático do Citocromo P-450/metabolismo , Álcoois , Acetatos , Alcenos/química
18.
ACS Synth Biol ; 12(8): 2444-2454, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37524064

RESUMO

With advances in machine learning (ML)-assisted protein engineering, models based on data, biophysics, and natural evolution are being used to propose informed libraries of protein variants to explore. Synthesizing these libraries for experimental screens is a major bottleneck, as the cost of obtaining large numbers of exact gene sequences is often prohibitive. Degenerate codon (DC) libraries are a cost-effective alternative for generating combinatorial mutagenesis libraries where mutations are targeted to a handful of amino acid sites. However, existing computational methods to optimize DC libraries to include desired protein variants are not well suited to design libraries for ML-assisted protein engineering. To address these drawbacks, we present DEgenerate Codon Optimization for Informed Libraries (DeCOIL), a generalized method that directly optimizes DC libraries to be useful for protein engineering: to sample protein variants that are likely to have both high fitness and high diversity in the sequence search space. Using computational simulations and wet-lab experiments, we demonstrate that DeCOIL is effective across two specific case studies, with the potential to be applied to many other use cases. DeCOIL offers several advantages over existing methods, as it is direct, easy to use, generalizable, and scalable. With accompanying software (https://github.com/jsunn-y/DeCOIL), DeCOIL can be readily implemented to generate desired informed libraries.


Assuntos
Engenharia de Proteínas , Software , Biblioteca Gênica , Aprendizado de Máquina , Códon/genética
19.
Angew Chem Int Ed Engl ; 62(35): e202303879, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37260412

RESUMO

We report a computationally driven approach to access enantiodivergent enzymatic carbene N-H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone-carbene (LAC) intermediate in the enzyme active site by installing a new H-bond anchoring point. This H-bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselective N-nucleophilic attack by the amine substrate. By combining MD simulations and site-saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineered S-selective P411 enzymes. The resulting variant, L5_FL-B3, accepts a broad scope of amine substrates for N-H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93 er).


Assuntos
Metano , Engenharia de Proteínas , Metano/química , Domínio Catalítico , Aminas
20.
Res Sq ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090661

RESUMO

In nature and synthetic chemistry, stereoselective [2+1] cyclopropanation is the most prevalent strategy for the synthesis of chiral cyclopropanes, a class of key pharmacophores in pharmaceuticals and bioactive natural products. One of the most extensively studied reactions in the organic chemist's arsenal, stereoselective [2+1] cyclopropanation, largely relies on the use of stereodefined olefins, which require elaborate laboratory synthesis or tedious separation to ensure high stereoselectivity. Here we report engineered hemoproteins derived from a bacterial cytochrome P450 that catalyze the synthesis of chiral 1,2,3-polysubstituted cyclopropanes, regardless of the stereopurity of the olefin substrates used. Cytochrome P450 BM3 variant IC-G3 exclusively converts ( Z )-enol acetates to enantio- and diastereoenriched cyclopropanes and in our model reaction delivers a leftover ( E )-enol acetate with 98% stereopurity, using whole Escherichia coli cells. IC-G3 was further engineered with a single mutation to enable the biotransformation of ( E )-enol acetates to α -branched ketones with high levels of enantioselectivity while simultaneously catalyzing the cyclopropanation of ( Z )-enol acetates with excellent activities and selectivities. We conducted docking studies and molecular dynamics simulations to understand how active-site residues distinguish between the substrate isomers and enable the enzyme to perform these distinct transformations with such high selectivities. Computational studies suggest the observed enantio- and diastereoselectivities are achieved through a stepwise pathway. These biotransformations streamline the synthesis of chiral 1,2,3-polysubstituted cyclopropanes from readily available mixtures of ( Z/E )-olefins, adding a new dimension to classical cyclopropanation methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...