Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 19(24): 6697-703, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11118204

RESUMO

Escherichia coli K-12, the most widely used laboratory bacterium, does not secrete proteins into the extracellular medium under standard growth conditions, despite possessing chromosomal genes encoding a putative type II secretion machinery (secreton). We show that in wild-type E.coli K-12, divergent transcription of the two operons in the main chromosomal gsp locus, encoding the majority of the secreton components, is silenced by the nucleoid-structuring protein H-NS. In mutants lacking H-NS, the secreton genes cloned on a moderate-copy-number plasmid are expressed and promote efficient secretion of the endogenous, co-regulated endochitinase ChiA. This is the first time that secretion of an endogenous extracellular protein has been demonstrated in E.coli K-12.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas de Bactérias/metabolismo , Sequência de Bases , Quitinases , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Plasmídeos , Transcrição Gênica
2.
Mol Microbiol ; 35(6): 1506-17, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10760150

RESUMO

The chromosome of Escherichia coli K-12 contains a putative gene, yheB (chiA), at centisome 74.7, whose product shows sequence similarity with chitinases of bacterial and viral origin. We cloned the chiA (yheB) gene and demonstrated that it codes for a 94.5 kDa periplasmic protein with endochitinase/lysozyme activity. Under standard laboratory growth conditions, chiA expression is very low, as shown by the Lac- phenotype of a chiA transcriptional fusion to a promoterless lacZ reporter. To identify factors that control chitinase gene expression, we generated random Tn10 insertions in the chromosome of the fusion-containing strain, selecting for a Lac+ phenotype. The majority of the mutations that caused a Lac+ phenotype mapped to the hns gene, encoding the nucleoid-structuring protein H-NS. Transcription of chiA in vivo is driven by a single sigma70 promoter and is derepressed in an hns mutant. Using a competitive gel retardation assay, we demonstrated that H-NS binds directly and with high affinity to the chiA promoter region. In addition to hns, other E. coli mutations causing defects in global regulatory proteins, such as fis, crp or stpA in combination with hns, increased chiA expression to different extents, as did decreasing the growth temperature from 37 degrees C to 30 degrees C. A possible physiological function of ChiA (YheB) endochitinase in E. coli K-12 is discussed.


Assuntos
Proteínas de Bactérias , Quitinases/genética , Quitinases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Frações Subcelulares , Especificidade por Substrato , beta-Galactosidase/genética
3.
Genet Anal ; 15(6): 235-8, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10609760

RESUMO

Transcriptional regulation of Escherichia coli ATCC11105 penicillin amidase gene (pac) by cAMP receptor protein (CRP) and phenylacetic acid (PAA) was studied by using operon fusions with divergent reporter gene (lacZ, and phoA) constructs. A 150 bp DNA segment essential for the regulation of pac gene transcription by CRP and PAA was defined.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Penicilina Amidase/genética , Fenilacetatos/metabolismo , Sequência de Bases , Escherichia coli/enzimologia , Genes Reporter , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Sequências Reguladoras de Ácido Nucleico
4.
Cell Mol Life Sci ; 54(4): 347-52, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9614971

RESUMO

Escherichia coli K-12 possesses a large number of chromosomal genes that, in other Gram-negative bacteria, are involved either in exoprotein secretion or in the formation of type IV pili. Some of these E. coli genes have been shown to encode proteins when expressed from heterologous promoters. Furthermore, at least two of these proteins are functional in heterologous complementation tests, but none of the genes examined so far is expressed when E. coli is grown under standard laboratory conditions. We propose that transcription of these genes is turned off during growth in laboratory medium, that their expression is controlled by environmental sensor proteins and that they could play an important role in pathogenicity or in the utilization of large polymers.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cromossomos Bacterianos/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia
5.
Mol Microbiol ; 27(4): 763-75, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9515702

RESUMO

Escherichia coli K-12 strains grown at 37 degrees C or 42 degrees C, but not at 30 degrees C, process the precursors of the Neisseria gonorrhoeae type IV pilin PilE and the Klebsiella oxytoca type IV pseudopilin PulG in a manner reminiscent of the prepilin peptidase-dependent processing of these proteins that occurs in these bacteria. Processing of prePulG in Escherichia coli requires a glycine at position -1, as does processing by the cognate prepilin peptidase (PulO), and is unaffected by mutations that inactivate several non-specific proteases. These data suggested that E. coli K-12 has a functional prepilin peptidase, despite the fact that it does not itself appear to express either type IV pilin or pseudopilin genes under the conditions that allow prePilE and prePulG processing. The E. coli K-12 genome contains two genes encoding proteins with significant sequence similarity to prepilin peptidases: gspO at minute 74.5 and pppA (f310c) at minute 67 on the genetic map. We have previously obtained evidence that gspO encodes an active enzyme but is not transcribed. pppA was cloned and shown to code for a functional prepilin peptidase capable of processing typical prepilin peptidase substrates. Inactivation of pppA eliminated the endogenous, thermoinducible prepilin peptidase activity. PppA was able to replace PulO prepilin peptidase in a pullulanase secretion system reconstituted in E. coli when expressed from high-copy-number plasmids but not when present in a single chromosomal copy. The analysis of pppA-lacZ fusions indicated that pppA expression was very low and regulated by the growth temperature at the level of translation, in agreement with the observed temperature dependence of PppA activity. Polymerase chain reaction and Southern hybridization analyses revealed the presence of the pppA gene in 12 out of 15 E. coli isolates.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidases , Escherichia coli/enzimologia , Escherichia coli/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/metabolismo , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Gene ; 192(1): 13-9, 1997 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-9224869

RESUMO

The main terminal branch (MTB) of the general secretory pathway is used by a wide variety of Gram- bacteria to transport exoproteins from the periplasm to the outside milieu. Recent work has led to the identification of the function of two of its 14 (or more) components: an enzyme with type-IV prepilin peptidase activity and a chaperone-like protein required for the insertion of another of the MTB components into the outer membrane. Despite these important discoveries, little tangible progress has been made towards identifying MTB components that determine secretion specificity (presumably by binding to cognate exoproteins) or which form the putative channel through which exoproteins are transported across the outer membrane. However, the idea that the single integral outer membrane component of the MTB could line the wall of this channel, and the intriguing possibility that other components of the MTB form a rudimentary type-IV pilus-like structure that might span the periplasm both deserve more careful examination. Although Escherichia coli K-12 does not normally secrete exoproteins, its chromosome contains an apparently complete set of genes coding for MTB components. At least two of these genes code for functional proteins, but the operon in which twelve of the genes are located does not appear to be expressed. We are currently searching for conditions which allow these genes to be expressed with the eventual aim of identifying the protein(s) that E. coli K-12 can secrete.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicosídeo Hidrolases/metabolismo
7.
Folia Microbiol (Praha) ; 42(3): 184-92, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9246760

RESUMO

Pullulanase of Klebsiella oxytoca is one of a wide variety of extracellular proteins that are secreted by Gram-negative bacteria by the complex main terminal branch (MTB) of the general secretory pathway. The roles of some of the 14 components of the MTB are now becoming clear. In this review it is proposed that most of these proteins form a complex, the secretion, that spans the cell envelope to control the opening and closing of channel in the outer membrane. Progress toward the goal of testing this model is reviewed.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico Ativo , Genes Bacterianos , Klebsiella/enzimologia , Klebsiella/metabolismo , Modelos Biológicos
8.
J Bacteriol ; 178(20): 5954-9, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8830692

RESUMO

Ribose-binding protein (RBP) is exported to the periplasm of Escherichia coli via the general export pathway. An rbsB-lacZ gene fusion was constructed and used to select mutants defective in RBP export. The spontaneous Lac+ mutants isolated in this selection contained either single-amino-acid substitutions or a deletion of the RBP signal sequence. Intact rbsB genes containing eight different point mutations in the signal sequence were reconstructed, and the effects of the mutations on RBP export were examined. Most of the mutations caused severe defects in RBP export. In addition, different suppressor mutations in SecY/PrlA protein were analyzed for their effects on the export of RBP signal sequence mutants in the presence or absence of SecB. Several RBP signal sequence mutants were efficiently suppressed, but others were not suppressed. Export of an RBP signal sequence mutant in prlA mutant strains was partially dependent on SecB, which is in contrast to the SecB independence of wild-type RBP export. However, the kinetics of export of an RBP signal sequence mutant point to a rapid loss of pre-RBP export competence, which occurs in strains containing or lacking SecB. These results suggest that SecB does not stabilize the export-competent conformation of RBP and may affect translocation by stabilizing the binding of pre-RBP at the translocation site.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Transporte Biológico , Proteínas de Transporte/genética , Dados de Sequência Molecular , Mutação , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Supressão Genética
9.
J Bacteriol ; 178(12): 3544-9, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8655552

RESUMO

Systematic sequencing of the Escherichia coli K-12 chromosome (GenBank entry U18997) has revealed the presence of an apparently complete operon of genes (the gspC-0 operon) similar to genes coding for components of the main terminal branch of the general secretory pathway (e.g., the Klebsiella oxytoca pulC-0 pullulanase secretion operon) and to related genes required for type IV pilus biogenesis. For example, the last gene in the gsp operon, gspO (formerly hopD), encodes a protein which is similar to several type IV prepilin peptidases. Expression of gspO from lacZp promotes cleavage of two known prepilin peptidase substrates in E. coli K-12: Neisseria gonorrhoeae type IV prepilin and K. oxytoca prePulG protein. gspO also complements a mutation in the corresponding gene (pulO) of the pullulanase secretion operon when it is expressed from lacZp. Another gene in the gsp operon, gspG (formerly hopG), encodes a protein similar to prePulG, a component of the pullulanase secretion pathway. Expression of gspG from lacZp leads to production of a protein which (i) is recognized by PulG-specific antiserum (and by antiserum against the Pseudomonas aeruginosa PulG homolog XcpG [formerly XcpT]), (ii) is processed in cells expressing gspO, and (iii) restores secretion in cells carrying a pulG mutation. The chromosomal copies of gspG and gspO are apparently not expressed, probably because of very weak transcription from the upstream region, as measured by using a chromosomal gspC-lacZ operon fusion. Thus, the gsp operon of E. coli K-12 includes at least two functional genes which, together with the rest of the operon, are probably not expressed under laboratory conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Endopeptidases/genética , Proteínas de Fímbrias , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Óperon , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica
10.
J Bacteriol ; 175(13): 4036-44, 1993 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8320219

RESUMO

An Escherichia coli strain containing a signal sequence mutation in the periplasmic maltose-binding protein (MBP) (malE18-1) and a point mutation in the soluble export factor SecB (secBL75Q) is completely defective in export of MBP and unable to grow on maltose (Mal- phenotype). We isolated 95 spontaneous Mal+ revertants and characterized them genetically. Three types of extragenic suppressors were identified: informational (missense) suppressors, a bypass suppressor conferring the Mal+ phenotype in the absence of MBP, and suppressors affecting the prlA gene, which encodes a component of the protein export apparatus. In this study, a novel prlA allele, designated prlA1001 and mapping in the putative second transmembrane domain of the PrlA (SecY) protein, was found. In addition, we isolated a mutation designated prlA1024 which is identical to prlA4-2, the mutation responsible for the signal sequence suppression in the prlA4 (prlA4-1 prlA4-2) double mutant (T. Sako and T. Iino, J. Bacteriol. 170:5389-5391, 1988). Comparison of the prlA1024 mutant and the prlA4 double mutant provides a possible explanation for the isolation of these prlA alleles.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Genes Supressores/genética , Proteínas de Transporte de Monossacarídeos , Proteínas Periplásmicas de Ligação , Mapeamento Cromossômico , Proteínas Ligantes de Maltose , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese , Mutação , Sinais Direcionadores de Proteínas/genética , Canais de Translocação SEC , Seleção Genética , Análise de Sequência de DNA
11.
J Bacteriol ; 175(8): 2184-8, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8468278

RESUMO

Chaperone proteins bind to newly synthesized polypeptides and assist in various assembly reactions. The Escherichia coli chaperone protein SecB binds precursors of exported proteins and assists in export. In vitro, SecB can bind to many unfolded proteins. In this report, we demonstrate that SecB binding in vivo is highly selective; the major polypeptides that are bound by SecB are nascent precursors of the exported proteins maltose-binding protein (MBP), LamB, OmpF, and OmpA. These results support the hypothesis that the primary physiological function of SecB is to stimulate protein export. By interacting with nascent polypeptides, SecB probably stimulates their cotranslational association with the membrane-bound protein translocation apparatus.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Precursores de Proteínas/metabolismo , Ligação Proteica
12.
J Bacteriol ; 175(8): 2255-62, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8468286

RESUMO

The Escherichia coli SecB protein is a cytosolic chaperone protein that is required for rapid export of a subset of exported proteins. To aid in elucidation of the activities of SecB that contribute to rapid export kinetics, mutations that partially suppressed the export defect caused by the absence of SecB were selected. One of these mutations improves protein export in the absence of SecB and is the result of a duplication of SecA coding sequences, leading to the synthesis of a large, in-frame fusion protein. Unexpectedly, this mutation conferred a second phenotype. The secA mutation exacerbated the defective protein export caused by point mutations in the signal sequence of pre-maltose-binding protein. One explanation for these results is that the mutant SecA protein has sustained a duplication of its binding site(s) for exported protein precursors so that the mutant SecA is altered in its interaction with precursor molecules.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Transporte de Monossacarídeos , Mutação , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Proteínas de Transporte/metabolismo , Mapeamento Cromossômico , Escherichia coli/genética , Proteínas Ligantes de Maltose , Dados de Sequência Molecular , Família Multigênica , Fenótipo , Precursores de Proteínas/metabolismo , Canais de Translocação SEC , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA