Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(35): 39195-39204, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805831

RESUMO

Silicon has been considered a good candidate for replacing the commonly used carbon anodes for lithium-ion batteries (LIBs) due to its high specific capacity, which can be up to 11 times higher than that of carbon. However, the desirable advantage that silicon brings to battery performance is currently overshadowed by its stress-induced performance loss and high electronic resistivity. The induced stress arises from two sources, namely, the deposition process (i.e., residual stress) during fabrication and the volume expansion (i.e., mechanical stress) associated with the lithiation/delithiation process. Of the two, residual stress has largely been ignored, underestimated, or considered to have a negligible effect without any rigorous evidence being put forward. In this contribution, we produced silicon thin films having a wide range of residual stress and resistivity using a physical vapor deposition technique, magnetron sputtering. Three pairs of silicon thin-film anodes were utilized to study the effect of residual stress on the electrochemical and cyclability performance as anodes for LIBs. Each set consisted of a pair of films having essentially the same resistivity, density, thickness, and oxidation amount but distinctly different residual stresses. The comparison was evaluated by conducting charge/discharge cycling and cyclic voltammetry (CV) experiments. In contrast to the fixed belief within the literature, higher compressive residual-stress films showed better electrochemical and cycle performance compared to lower residual-stress films. The results, herein, present an informed understanding of the role that residual stress plays, which will help researchers improve the development of silicon-based thin-film anodes.

2.
Adv Mater ; 32(18): e1904205, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31957144

RESUMO

Ionic liquids (ILs) are widely studied as a safer alternative electrolyte for lithium-ion batteries. The properties of IL electrolytes compared to conventional electrolytes make them more thermally stable, but they also have poor wetting with commercial separators. In a lithium-ion battery, the electrolyte should completely wet out the separator and electrodes to reduce the cell internal resistance. Investigations of cell materials with IL electrolytes have shown that the wetting issues in IL-electrolyte cells are most likely due to poor separator compatibility, not electrode compatibility. A compatible separator must be developed before IL electrolytes can be used in commercial lithium-ion batteries. Herein, separators for IL electrolytes, including commercial and novel separators, are reviewed. Separators with different processing methods, polymers, additives, and different IL electrolytes are considered. Collated, the separator studies show a strong correlation between ionic conductivity and membrane porosity, even more than the electrolyte type. The challenge of a suitable separator for IL electrolytes is not solved yet. Herein, it is revealed that a separator for IL electrolytes will most likely require a combination of high thermal and mechanical stability polymer, ceramic additives, and an optimized manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...