Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104747, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094697

RESUMO

Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.


Assuntos
Lisina , Elongação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos , Anticorpos/metabolismo , Lisina/metabolismo , Metilação , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
2.
Protein Sci ; 27(4): 898-902, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417696

RESUMO

Bacillithiol is a low-molecular weight thiol produced by many gram-positive organisms, including Staphylococcus aureus and Bacillus anthracis. It is the major thiol responsible for maintaining redox homeostasis and cellular detoxification, including inactivation of the antibiotic fosfomycin. The metal-dependent bacillithiol transferase BstA is likely involved in these sorts of detoxification processes, but the exact substrates and enzyme mechanism have not been identified. Here we report the 1.34 Å resolution X-ray crystallographic structure of BstA from S. aureus. Our structure confirms that BstA belongs to the YfiT-like metal-dependent hydrolase superfamily. Like YfiT, our structure contains nickel within its active site, but our functional data suggest that BstA utilizes zinc for activity. Although BstA and YfiT both contain a core four helix bundle and coordinate their metal ions in the same fashion, significant differences between the protein structures are described here.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Níquel/metabolismo , Conformação Proteica , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...