Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Biochemistry ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037053

RESUMO

Virus-like particles (VLPs) from bacteriophage MS2 provide a platform to study protein self-assembly and create engineered systems for drug delivery. Here, we aim to understand the impact of intersubunit interface mutations on the local and global structure and function of MS2-based VLPs. In previous work, our lab identified locally supercharged double mutants [T71K/G73R] that concentrate positive charge at capsid pores, enhancing uptake into mammalian cells. To study the effects of particle size on cellular internalization, we combined these double mutants with a single point mutation [S37P] that was previously reported to switch particle geometry from T = 3 to T = 1 icosahedral symmetry. These new variants retained their enhanced cellular uptake activity and could deliver small-molecule drugs with efficacy levels similar to our first-generation capsids. Surprisingly, these engineered triple mutants exhibit increased thermostability and unexpected geometry, producing T = 3 particles instead of the anticipated T = 1 assemblies. Transmission electron microscopy revealed various capsid assembly states, including wild-type (T = 3), T = 1, and rod-like particles, that could be accessed using different combinations of these point mutations. Molecular dynamics experiments recapitulated the structural rationale in silico for the single point mutation [S37P] forming a T = 1 virus-like particle and showed that this assembly state was not favored when combined with mutations that favor rod-like architectures. Through this work, we investigated how interdimer interface dynamics influence VLP size and morphology and how these properties affect particle function in applications such as drug delivery.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149742

RESUMO

The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.


Assuntos
Proteínas Intrinsicamente Desordenadas , Micelas , Tensoativos , Simulação por Computador
3.
Virulence ; 14(1): 2249790, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621095

RESUMO

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Assuntos
Yersinia pseudotuberculosis , Animais , Yersinia pseudotuberculosis/genética , Sistemas de Secreção Tipo III/genética , Imunidade Inata , Macrófagos , Yersinia
4.
ACS Cent Sci ; 9(6): 1160-1169, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396857

RESUMO

The Escherichia coli (E. coli) ribosome can incorporate a variety of non-l-α-amino acid monomers into polypeptide chains in vitro but with poor efficiency. Although these monomers span a diverse set of compounds, there exists no high-resolution structural information regarding their positioning within the catalytic center of the ribosome, the peptidyl transferase center (PTC). Thus, details regarding the mechanism of amide bond formation and the structural basis for differences and defects in incorporation efficiency remain unknown. Within a set of three aminobenzoic acid derivatives-3-aminopyridine-4-carboxylic acid (Apy), ortho-aminobenzoic acid (oABZ), and meta-aminobenzoic acid (mABZ)-the ribosome incorporates Apy into polypeptide chains with the highest efficiency, followed by oABZ and then mABZ, a trend that does not track with the nucleophilicity of the reactive amines. Here, we report high-resolution cryo-EM structures of the ribosome with each of these three aminobenzoic acid derivatives charged on tRNA bound in the aminoacyl-tRNA site (A-site). The structures reveal how the aromatic ring of each monomer sterically blocks the positioning of nucleotide U2506, thereby preventing rearrangement of nucleotide U2585 and the resulting induced fit in the PTC required for efficient amide bond formation. They also reveal disruptions to the bound water network that is believed to facilitate formation and breakdown of the tetrahedral intermediate. Together, the cryo-EM structures reported here provide a mechanistic rationale for differences in reactivity of aminobenzoic acid derivatives relative to l-α-amino acids and each other and identify stereochemical constraints on the size and geometry of non-monomers that can be accepted efficiently by wild-type ribosomes.

5.
J Am Chem Soc ; 145(29): 15827-15837, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37438911

RESUMO

Photosynthetic organisms utilize dynamic and complex networks of pigments bound within light-harvesting complexes to transfer solar energy from antenna complexes to reaction centers. Understanding the principles underlying the efficiency of these energy transfer processes, and how they may be incorporated into artificial light-harvesting systems, is facilitated by the construction of easily tunable model systems. We describe a protein-based model to mimic directional energy transfer between light-harvesting complexes using a circular permutant of the tobacco mosaic virus coat protein (cpTMV), which self-assembles into a 34-monomer hollow disk. Two populations of cpTMV assemblies, one labeled with donor chromophores and another labeled with acceptor chromophores, were coupled using a direct protein-protein bioconjugation method. Using potassium ferricyanide as an oxidant, assemblies containing o-aminotyrosine were activated toward the addition of assemblies containing p-aminophenylalanine. Both of these noncanonical amino acids were introduced into the cpTMV monomers through amber codon suppression. This coupling strategy has the advantages of directly, irreversibly, and site-selectively coupling donor with acceptor protein assemblies and avoids cross-reactivity with native amino acids and undesired donor-donor or acceptor-acceptor combinations. The coupled donor-acceptor model was shown to transfer energy from an antenna disk containing donor chromophores to a downstream disk containing acceptor chromophores. This model ultimately provides a controllable and modifiable platform for understanding photosynthetic interassembly energy transfer and may lead to the design of more efficient functional light-harvesting materials.


Assuntos
Modelos Biológicos , Fotossíntese , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Aminoácidos
6.
Sci Rep ; 13(1): 8595, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237011

RESUMO

CTX-Ms are encoded by blaCTX-M genes and are widely distributed extended-spectrum ß-lactamases (ESBLs). They are the most important antimicrobial resistance (AMR) mechanism to ß-lactam antibiotics in the Enterobacteriaceae. However, the role of transmissible AMR plasmids in the dissemination of blaCTX-M genes has scarcely been studied in Africa where the burden of AMR is high and rapidly spreading. In this study, AMR plasmid transmissibility, replicon types and addiction systems were analysed in CTX-M-producing Escherichia coli clinical isolates in Ethiopia with a goal to provide molecular insight into mechanisms underlying such high prevalence and rapid dissemination. Of 100 CTX-Ms-producing isolates obtained from urine (84), pus (10) and blood (6) from four geographically distinct healthcare settings, 75% carried transmissible plasmids encoding for CTX-Ms, with CTX-M-15 being predominant (n = 51). Single IncF plasmids with the combination of F-FIA-FIB (n = 17) carried the bulk of blaCTX-M-15 genes. In addition, IncF plasmids were associated with multiple addiction systems, ISEcp1 and various resistance phenotypes for non-cephalosporin antibiotics. Moreover, IncF plasmid carriage is associated with the international pandemic E. coli ST131 lineage. Furthermore, several CTX-M encoding plasmids were associated with serum survival of the strains, but less so with biofilm formation. Hence, both horizontal gene transfer and clonal expansion may contribute to the rapid and widespread distribution of blaCTX-M genes among E. coli populations in Ethiopian clinical settings. This information is relevant for local epidemiology and surveillance, but also for global understanding of the successful dissemination of AMR gene carrying plasmids.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Plasmídeos , Humanos , Antibacterianos , beta-Lactamases/genética , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Etiópia/epidemiologia , Plasmídeos/genética
7.
Nat Commun ; 14(1): 1879, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019921

RESUMO

Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana , Plasmídeos , Biofilmes , Conjugação Genética
8.
J Telemed Telecare ; : 1357633X231167620, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37082796

RESUMO

INTRODUCTION: We aimed to evaluate the implementation of the Good Life with osteoArthritis in Denmark (GLA:D®) program via telehealth in Australia using Reach, Effectiveness, Adoption, Implementation, and Maintenance Qualitative Evaluation for Systematic Translation framework. METHODS: Using a convergent mixed-methods design, semi-structured one-on-one interviews with physiotherapist adopters and nonadopters of GLA:D® via telehealth were analyzed thematically alongside the examination of registry data (1 March 2020-10 February 2022) from patients with hip or knee osteoarthritis completing GLA:D® via telehealth (telehealth-only) or combined with in-person care (hybrid). Effectiveness was determined as changes from baseline to 3-month follow-up (mean differences, 95% confidence intervals, effect size) for Knee injury and Osteoarthritis Outcome Score (KOOS-12)/Hip disability and Osteoarthritis Outcome Score-12 (HOOS-12), and chair stand test. Group- and individual-level changes were compared to published minimally clinically important change scores. RESULTS: Twenty-three interviews (12 adopters, 11 nonadopters) found key barriers/facilitators to reach and adoption, high perceived effectiveness, and strategies to support sustainability. Of 2612 registered patients, 85 (3%) and 115 (4%) completed GLA:D® via telehealth-only or hybrid model, respectively. Most effectiveness outcomes were associated with moderate-large improvements. Group-level changes exceeded minimally clinically important change values for KOOS/HOOS-quality of life and chair stand test. Nearly two out of three patients reached a minimally clinically important change for KOOS/HOOS-quality of life. With telehealth-only and hybrid delivery, 99% (n = 82) and 85% (n = 97) were satisfied/very satisfied. Physiotherapist adoption was limited (n = 128, 6%). DISCUSSION: GLA:D® delivered via telehealth is effective, had high patient satisfaction, and was perceived positively by physiotherapist adopters. Addressing low reach and adoption requires further implementation strategies to facilitate greater telehealth opportunities for patients and physiotherapists.

9.
Plasmid ; 126: 102683, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075853

RESUMO

Yersinia pathogenicity depends mainly on a Type III Secretion System (T3SS) responsible for translocating effector proteins into the eukaryotic target cell cytosol. The T3SS is encoded on a 70 kb, low copy number virulence plasmid, pYV. A key T3SS regulator, YopD, is a multifunctional protein and consists of discrete modular domains that are essential for pore formation and translocation of Yop effectors. In Y. pseudotuberculosis, the temperature-dependent plasmid copy number increase that is essential for elevated T3SS gene dosage and virulence is also affected by YopD. Here, we found that the presence of intracellular YopD results in increased levels of the CopA-RNA and CopB, two inhibitors of plasmid replication. Secretion of YopD leads to decreased expression of copA and copB, resulting in increased plasmid copy number. Moreover, using a systematic mutagenesis of YopD mutants, we demonstrated that the same discrete modular domains important for YopD translocation are also necessary for both the regulation of plasmid copy number as well as copA and copB expression. Hence, Yersinia has evolved a mechanism coupling active secretion of a plasmid-encoded component of the T3SS, YopD, to the regulation of plasmid replication. Our work provides evidence for the cross-talk between plasmid-encoded functions with the IncFII replicon.


Assuntos
Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Cálcio/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Variações do Número de Cópias de DNA , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Small ; 19(20): e2207805, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811150

RESUMO

Photosynthetic light harvesting requires efficient energy transfer within dynamic networks of light-harvesting complexes embedded within phospholipid membranes. Artificial light-harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein-based light-harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed.  The protein model consists of the tobacco mosaic viral capsid proteins that are gene-doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site-selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual-modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein-surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light-harvesting system.


Assuntos
Fotossíntese , Proteínas , Transferência de Energia , Bicamadas Lipídicas/química
11.
Bioconjug Chem ; 34(3): 510-517, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787347

RESUMO

Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.


Assuntos
Antineoplásicos , Imunoconjugados , Cisteína , Acoplamento Oxidativo , Compostos de Sulfidrila , Quinonas , Maleimidas
12.
J Am Chem Soc ; 144(51): 23368-23378, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525679

RESUMO

The tobacco mosaic viral capsid protein (TMV) is a frequent target for derivatization for myriad applications, including drug delivery, biosensing, and light harvesting. However, solutions of the stacked disk assembly state of TMV are difficult to characterize quantitatively due to their large size and multiple assembled states. Charge detection mass spectrometry (CDMS) addresses the need to characterize heterogeneous populations of large protein complexes in solution quickly and accurately. Using CDMS, previously unobserved assembly states of TMV, including 16-monomer disks and odd-numbered disk stacks, have been characterized. We additionally employed a peptide-protein conjugation reaction in conjunction with CDMS to demonstrate that modified TMV proteins do not redistribute between disks. Finally, this technique was used to discriminate between protein complexes of near-identical mass but different configurations. We have gained a greater understanding of the behavior of TMV, a protein used across a broad variety of fields and applications, in the solution state.


Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/química , Proteínas do Capsídeo/química , Fenômenos Químicos
13.
ACS Chem Biol ; 17(12): 3367-3378, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378277

RESUMO

Protein-based nanoparticles are useful models for the study of self-assembly and attractive candidates for drug delivery. Virus-like particles (VLPs) are especially promising platforms for expanding the repertoire of therapeutics that can be delivered effectively as they can deliver many copies of a molecule per particle for each delivery event. However, their use is often limited due to poor uptake of VLPs into mammalian cells. In this study, we use the fitness landscape of the bacteriophage MS2 VLP as a guide to engineer capsid variants with positively charged surface residues to enhance their uptake into mammalian cells. By combining mutations with positive fitness scores that were likely to produce assembled capsids, we identified two key double mutants with internalization efficiencies as much as 67-fold higher than that of wtMS2. Internalization of these variants with positively charged surface residues depends on interactions with cell surface sulfated proteoglycans, and yet, they are biophysically similar to wtMS2 with low cytotoxicity and an overall negative charge. Additionally, the best-performing engineered MS2 capsids can deliver a potent anticancer small-molecule therapeutic with efficacy levels similar to antibody-drug conjugates. Through this work, we were able to establish fitness landscape-based engineering as a successful method for designing VLPs with improved cell penetration. These findings suggest that VLPs with positive surface charge could be useful in improving the delivery of small-molecule- and nucleic acid-based therapeutics.


Assuntos
Capsídeo , Nanopartículas , Animais , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Mamíferos/metabolismo
14.
J Phys Chem B ; 126(40): 7981-7991, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36191182

RESUMO

Despite extensive studies, many questions remain about what structural and energetic factors give rise to the remarkable energy transport efficiency of photosynthetic light-harvesting protein complexes, owing largely to the inability to synthetically control such factors in these natural systems. Herein, we demonstrate energy transfer within a biomimetic light-harvesting complex consisting of identical chromophores attached in a circular array to a protein scaffold derived from the tobacco mosaic virus coat protein. We confirm the capability of energy transport by observing ultrafast depolarization in transient absorption anisotropy measurements and a redshift in time-resolved emission spectra in these complexes. Modeling the system with kinetic Monte Carlo simulations recapitulates the observed anisotropy decays, suggesting an inter-site hopping rate as high as 1.6 ps-1. With these simulations, we identify static disorder in orientation, site energy, and degree of coupling as key remaining factors to control to achieve long-range energy transfer in these systems. We thereby establish this system as a highly promising, bottom-up model for studying long-range energy transfer in light-harvesting protein complexes.


Assuntos
Biomimética , Vírus do Mosaico do Tabaco , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Vírus do Mosaico do Tabaco/química
15.
J Am Soc Mass Spectrom ; 33(11): 2129-2137, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173188

RESUMO

Short-time Fourier transforms with short segment lengths are typically used to analyze single ion charge detection mass spectrometry (CDMS) data either to overcome effects of frequency shifts that may occur during the trapping period or to more precisely determine the time at which an ion changes mass or charge, or enters an unstable orbit. The short segment lengths can lead to scalloping loss unless a large number of zero-fills are used, making computational time a significant factor in real-time analysis of data. Apodization specific fitting leads to a 9-fold reduction in computation time compared to zero-filling to a similar extent of accuracy. This makes possible real-time data analysis using a standard desktop computer. Rectangular apodization leads to higher resolution than the more commonly used Gaussian or Hann apodization and makes it possible to separate ions with similar frequencies, a significant advantage for experiments in which the masses of many individual ions are measured simultaneously. Equally important is a >20% increase in S/N obtained with rectangular apodization compared to Gaussian or Hann, which directly translates to a corresponding improvement in accuracy of both charge measurements and ion energy measurements that rely on the amplitudes of the fundamental and harmonic frequencies. Combined with computing the fast Fourier transform in a lower-level language, this fitting procedure eliminates computational barriers and should enable real-time processing of CDMS data on a laptop computer.


Assuntos
Análise de Dados , Análise de Fourier , Espectrometria de Massas/métodos , Íons/química
16.
ACS Cent Sci ; 8(7): 955-962, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35912347

RESUMO

A convenient enzymatic strategy is reported for the modification of cell surfaces. Using a tyrosinase enzyme isolated from Agaricus bisporus, unique tyrosine residues introduced at the C-termini of nanobodies can be site-selectively oxidized to reactive o-quinones. These reactive intermediates undergo rapid modification with nucleophilic thiol, amine, and imidazole residues present on cell surfaces, producing novel nanobody-cell conjugates that display targeted antigen binding. We extend this approach toward the synthesis of nanobody-NK cell conjugates for targeted immunotherapy applications. The resulting NK cell conjugates exhibit targeted cell binding and elicit targeted cell death.

17.
Anal Chem ; 94(33): 11703-11712, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961005

RESUMO

Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett's advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6-2.7 MDa) and AAV9 (3.7-4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions.


Assuntos
Espectrometria de Massas , Capsídeo , Análise de Fourier , Íons/química , Espectrometria de Massas/métodos , Eletricidade Estática
18.
ACS Appl Bio Mater ; 5(8): 3695-3702, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857070

RESUMO

Lipid and micelle-based nanocarriers have been explored for anticancer drug delivery to improve accumulation and uptake in tumor tissue. As an experimental opportunity in this area, our lab has developed a protein-based micelle nanocarrier consisting of a hydrophilic intrinsically disordered protein (IDP) domain bound to a hydrophobic tail, termed IDP-2Yx2A. This construct can be used to encapsulate hydrophobic chemotherapeutics that would otherwise be too insoluble in water to be administered. In this study, we evaluate the in vivo efficacy of IDP-2Yx2A by delivering a highly potent but water-insoluble cancer drug, SN38, into glioblastoma multiforme (GBM) tumors via convection-enhanced delivery (CED). The protein carriers alone are shown to elicit minimal toxicity effects in mice; furthermore, they can encapsulate and deliver concentrations of SN38 that would otherwise be lethal without the carriers. CED administration of these drug-loaded micelles into mice bearing U251-MG GBM xenografts resulted in slowed tumor growth and significant increases in median survival times compared to nonencapsulated SN38 and PBS controls.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Intrinsicamente Desordenadas , Animais , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Convecção , Excipientes , Glioblastoma/tratamento farmacológico , Micelas , Água
19.
ACS Cent Sci ; 8(4): 473-482, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35505866

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.

20.
NPJ Biofilms Microbiomes ; 8(1): 13, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351893

RESUMO

Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.


Assuntos
Yersinia pseudotuberculosis , Animais , Biofilmes , Caenorhabditis elegans/microbiologia , Transdução de Sinais , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...