Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 27(7): 1134-44, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18337747

RESUMO

The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.


Assuntos
Escherichia coli/metabolismo , Flagelos/metabolismo , Genes de Troca , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/ultraestrutura , Flagelos/enzimologia , Flagelos/ultraestrutura , Fumaratos/metabolismo , Deleção de Genes , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Succinato Desidrogenase/isolamento & purificação , Succinato Desidrogenase/metabolismo
2.
J Bacteriol ; 188(20): 7039-48, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015643

RESUMO

Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM.


Assuntos
Microscopia Crioeletrônica , Flagelos/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Salmonella typhimurium/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Substâncias Macromoleculares , Modelos Moleculares , Proteínas Motores Moleculares/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 103(39): 14313-8, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16973743

RESUMO

Escherichia coli chemotaxis is mediated by membrane receptor/histidine kinase signaling complexes. Fusing the cytoplasmic domain of the aspartate receptor, Tar, to a leucine zipper dimerization domain produces a hybrid, lzTar(C), that forms soluble complexes with CheA and CheW. The three-dimensional reconstruction of these complexes was different from that anticipated based solely on structures of the isolated components. We found that analogous complexes self-assembled with a monomeric cytoplasmic domain fragment of the serine receptor without the leucine zipper dimerization domain. These complexes have essentially the same size, composition, and architecture as those formed from lzTar(C). Thus, the organization of these receptor/signaling complexes is determined by conserved interactions between the constituent chemotaxis proteins and may represent the active form in vivo. To understand this structure in its cellular context, we propose a model involving parallel membrane segments in receptor-mediated CheA activation in vivo.


Assuntos
Quimiotaxia , Escherichia coli/metabolismo , Receptores de Aminoácido/química , Receptores de Aminoácido/metabolismo , Transdução de Sinais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Escherichia coli/química , Modelos Biológicos , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Receptores de Aminoácido/análise , Receptores de Aminoácido/ultraestrutura , Espalhamento de Radiação , Solubilidade
4.
Proc Natl Acad Sci U S A ; 101(50): 17480-5, 2004 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-15572451

RESUMO

Transmembrane signaling in bacterial chemotaxis has become an important model system for experimental and theoretical studies. These studies have provided a wealth of detailed molecular structures, including the structures of CheA, CheW, and the cytoplasmic domain of the serine receptor Tsr. How these three proteins interact to form the receptor/signaling complex remains unknown. By using EM and single-particle image analysis, we present a three-dimensional reconstruction of the receptor/signaling complex. The complex contains CheA, CheW, and the cytoplasmic portion of the aspartate receptor Tar. We observe density consistent with a structure containing 24 aspartate-receptor monomers and additional density sufficient to house the expected four CheA monomers and six CheW monomers. Within this bipolar structure are four groups of three receptor dimers that are not threefold symmetric and are therefore unlike the symmetric trimers observed in the x-ray crystal structure of the cytoplasmic domain of the serine receptor. In the latter, the interdimer contacts occur in the signaling domains near the hairpin loop. In our structure, the signaling domains within trimers appear spaced apart by the presence of CheA and CheW. This structure argues against models where one CheA and one CheW bind to the outer face of each of the dimers in the trimer. This structure of the receptor/signaling complex provides an additional basis for understanding the architecture of the large arrays of chemotaxis receptors, CheA, and CheW found at the cell poles in motile bacteria.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura
5.
J Biol Chem ; 277(39): 36755-9, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12119290

RESUMO

The Salmonella and Escherichia coli aspartate receptor, Tar, is representative of a large class of membrane receptors that generate chemotaxis responses by regulating the activity of an associated histidine protein kinase, CheA. Tar is composed of an NH(2)-terminal periplasmic ligand-binding domain linked through a transmembrane sequence to a COOH-terminal coiled-coil signaling domain in the cytoplasm. The isolated cytoplasmic domain of Tar fused to a leucine zipper sequence forms a soluble complex with CheA and the Src homology 3-like kinase activator, CheW. Activity of the CheA kinase in the soluble complex is essentially the same as in fully active complexes with the intact receptor in the membrane. The soluble complex is composed of approximately 28 receptor cytoplasmic domain chains, 6 CheW chains, and 4 CheA chains. It has a molecular weight of 1,400,000 (Liu, I., Levit, M., Lurz, R., Surette, M.G., and Stock, J.B. (1997) EMBO J. 16, 7231-7240). Electron microscopy reveals an elongated barrel-like structure with a largely hollow center. Immunoelectron microscopy has provided a general picture of the subunit and domain organization of the complex. CheA and CheW appear to be in the middle of the complex with the leucine zippers of the receptor construct at the ends. These findings show that the receptor signaling complex forms higher ordered structures with defined geometric architectures. Coupled with atomic models of the subunits, our results provide insights into the functional architecture by which the receptor regulates CheA kinase activity during bacterial chemotaxis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Bactérias/química , Membrana Celular/ultraestrutura , Células Quimiorreceptoras , Quimiotaxia , Citoplasma/metabolismo , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Histidina Quinase , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Microscopia Eletrônica , Microscopia Imunoeletrônica , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...