Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(30): e202400708, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529695

RESUMO

The synthesis of group 4 metal 1-metallacyclobuta-2,3-dienes as organometallic analogues of elusive 1,2-cyclobutadiene has so far been limited to SiMe3 substituted examples. We present the synthesis of two Ph substituted dilithiated ligand precursors for the preparation of four new 1-metallacyclobuta-2,3-dienes [rac-(ebthi)M] (M=Ti, Zr; ebthi=1,2-ethylene-1,10-bis(η5-tetrahydroindenyl)). The organolithium compounds [Li2(RC3Ph)] (1 b: R=Ph, 1 c: R=SiMe3) as well as the metallacycles of the general formula [rac-(ebthi)M(R1C3R2)] (2 b: M=Ti, R1=R2=Ph, 2 c: M=Ti, R1=Ph, R2=SiMe3; 3 b: M=Zr, R1=R2=Ph; 3 c: M=Zr, R1=Ph, R2=SiMe3) were fully characterised. Single crystal X-ray diffraction and quantum chemical bond analysis of the Ti and Zr complexes reveal ligand influence on the biradicaloid character of the titanocene complexes. X-band EPR spectroscopy of structurally similar Ti complexes [rac-(ebthi)Ti(Me3SiC3SiMe3)] (2 a), 2 b, and 2 c was carried out to evaluate the accessibility of an EPR active triplet state. Cyclic voltammetry shows that introduction of Ph groups renders the complexes easier to reduce. 13C CPMAS NMR analysis provides insights into the cause of the low field shift of the resonances of metal-bonded carbon atoms and provides evidence of the absence of the ß-C-Ti interaction.

2.
Adv Mater ; 36(6): e2309526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983740

RESUMO

Molecular copper catalysts have emerged as promising candidates for the electrochemical reduction of CO2 . Notable features of such systems include the ability of Cu to generate C2+  products and the well-defined active sites that allow for targeted structural tuning. However, the frequently observed in situ formation of Cu nanoclusters has undermined the advantages of the molecular frameworks. It is therefore desirable to develop Cu-based catalysts that retain their molecular structures during electrolysis. In this context, a heterogenized binuclear hydroxo-bridged phenanthroline Cu(II) compound with a short Cu···Cu distance is reported as a simple yet efficient catalyst for electrogeneration of ethylene and other C2 products. In an aqueous electrolyte, the catalyst demonstrates remarkable performance, with excellent Faradaic efficiency for C2 products (62%) and minimal H2 evolution (8%). Furthermore, it exhibits high stability, manifested by no observable degradation during 15 h of continuous electrolysis. The preservation of the atomic distribution of the active sites throughout electrolysis is substantiated through comprehensive characterizations, including X-ray photoelectron and absorption spectroscopy, scanning and transmission electron microscopy, UV-vis spectroscopy, as well as control experiments. These findings establish a solid foundation for further investigations into targeted structural tuning, opening new avenues for enhancing the catalytic performance of Cu-based molecular electrocatalysts.

7.
Chem Commun (Camb) ; 59(64): 9726-9729, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37476912

RESUMO

We present a computational approach for predicting key properties of organic radical anions, including excited-state lifetimes and redox potentials. The approach shows good agreement with experimental data and has potential for in silico screening to facilitate the rational design of photocatalysts.

8.
Chemistry ; 29(11): e202202730, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36426862

RESUMO

Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.

9.
Anal Chim Acta ; 1233: 340448, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283773

RESUMO

Multivariate curve resolution (MCR) methods aim at extracting pure component profiles from mixed spectral data and can be applied to high-dimensional data, e.g., from process spectroscopy or hyperspectral imaging techniques. One often observes that some parts of this data, namely certain rows and columns of the data matrix, are considered essential for MCR outcomes, while other parts are of minor importance. Some methods for determining essential data are known, but all have different disadvantages concerning the application for noisy data. This work presents a new approach on how to detect the essential information for noisy, experimental spectral data. Active nonnegativity constraints in combination with duality arguments are the key ingredients for determining essential spectra and frequency channels. The new approach is conceptually simple, computationally cheap and stable with respect to noise. The algorithm is tested for noisy experimental Raman, UV-Vis and FTIR-SEC data.


Assuntos
Algoritmos , Análise dos Mínimos Quadrados
10.
Chemistry ; 28(42): e202200974, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35510557

RESUMO

Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.

11.
Nature ; 603(7900): 229-230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264746
12.
Angew Chem Int Ed Engl ; 61(19): e202200723, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35187799

RESUMO

The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.

13.
Angew Chem Int Ed Engl ; 60(29): 15832-15837, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33894098

RESUMO

In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult-to-control reactivity of λ3 -bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation-stabilized λ3 -bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro-2-hydroxypropanyl substituents. A series of para-substituted λ3 -bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench-stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3 -bromane activation is exemplified by oxidative C-C, C-N, and C-O bond forming reactions.

14.
J Org Chem ; 85(12): 8029-8044, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32456428

RESUMO

The facilitation of redox-neutral reactions by electrochemical injection of holes and electrons, also known as "electrochemical catalysis", is a little explored approach that has the potential to expand the scope of electrosynthesis immensely. To systematically improve existing protocols and to pave the way toward new developments, a better understanding of the underlying principles is crucial. In this context, we have studied the Newman-Kwart rearrangement of O-arylthiocarbamates to the corresponding S-aryl derivatives, the key step in the synthesis of thiophenols from the corresponding phenols. This transformation is a particularly useful example because the conventional method requires temperatures up to 300 °C, whereas electrochemical catalysis facilitates the reaction at room temperature. A combined experimental-quantum chemical approach revealed several reaction channels and rendered an explanation for the relationship between the structure and reactivity. Furthermore, it is shown how rapid cyclic voltammetry measurements can serve as a tool to predict the feasibility for specific substrates. The study also revealed distinct parallels to photoredox-catalyzed reactions, in which back-electron transfer and chain propagation are competing pathways.

15.
Chimia (Aarau) ; 74(1): 49-56, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32200786

RESUMO

Electrosynthesis is frequently presented as an intrinsically sustainable, safe and efficient method. While this is indeed often the case, this assessment cannot be easily generalized, as a number of challenges need to be addressed on the way to more efficient and truly sustainable processes. These challenges comprise the necessity for employing large amounts of supporting electrolyte additives along with the concomitant separation and waste issues. A further problem is the kinetic inhibition of the heterogeneous electron exchange, which in many instances leads to a decreased selectivity and an increased energy consumption ( 'overpotential' ). Another challenge is the apparent restriction of electrosynthesis to redox reactions, which seems to exclude important redox-neutral processes such as rearrangements, cycloadditions and substitutions from the scope of applications. Herein, catalytic approaches and electrolyte concepts are presented, which can help to overcome the abovementioned issues. For illustration of the principles, examples from our recent research activities are used.

16.
Org Lett ; 20(23): 7483-7487, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30489089

RESUMO

An electrochemical approach toward rearrangement of O-aryl thiocarbamates to the corresponding S-aryl thiocarbamates is presented. The protocol requires only catalytic amounts of electric charge and allows for operation at room temperature. The electrolysis can be carried out with the simplest equipment, i.e., under galvanostatic conditions in an undivided cell. Furthermore, it is demonstrated that when the electrolysis is performed in a microflow reactor, almost quantitative yields can be achieved without using supporting electrolyte.

17.
Chem Rev ; 118(9): 4631-4701, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29319300

RESUMO

The utilization of CO2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.

18.
Angew Chem Int Ed Engl ; 57(2): 422-426, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29160932

RESUMO

Although organic electrosynthesis is generally considered to be a green method, the necessity for excess amounts of supporting electrolyte constitutes a severe drawback. Furthermore, the employment of redox mediators results in an additional separation problem. In this context, we have explored the applicability of soluble polyelectrolytes and polymediators with the TEMPO-mediated transformation of alcohols into carbonyl compounds as a test reaction. Catalyst benchmarking based on cyclic voltammetry studies indicated that the redox-active polymer can compete with molecularly defined TEMPO species. Alcohol oxidation was also highly efficient on a preparative scale, and our polymer-based approach allowed for the separation of both mediator and supporting electrolyte in a single membrane filtration step. Moreover, we have shown that both components can be reused multiple times.

19.
Chem Sci ; 8(9): 6493-6498, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989674

RESUMO

Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions. We propose the deactivation pathways in homogeneous solution are prevented by the immobilization: modified electrode reversibility is increased for a one-electron oxidation reaction. The modified electrodes were used to catalytically oxidize p-anisyl alcohol and 1-((benzyloxy)methyl)-4-methoxybenzene, selectively, to the corresponding benzaldehyde and benzyl ester, respectively.

20.
J Org Chem ; 82(22): 11669-11681, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28800234

RESUMO

The indirect ("ex-cell") electrochemical synthesis of benzoxazoles from imines using a redox mediator based on the iodine(I)/iodine(III) redox couple is reported. Tethering the redox-active iodophenyl subunit to a tetra-alkylammonium moiety allowed for anodic oxidation to be performed without supporting electrolyte. The mediator salt can be easily recovered and reused. Our "ex-cell" approach toward the electrosynthesis of benzoxazoles is compatible with a range of redox-sensitive functional groups. An unprecedented concerted reductive elimination mechanism for benzoxazole formation is proposed on the basis of control experiments and DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...