Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 79: 102201, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841351

RESUMO

Activated PI3Kδ Syndrome (APDS) is a rare inherited inborn error of immunity caused by mutations that constitutively activate the p110 delta isoform of phosphoinositide 3-kinase (PI3Kδ), resulting in recurring pulmonary infections. Currently no licensed therapies are available. Here we report the results of an open-label trial in which five subjects were treated for 12 weeks with nemiralisib, an inhaled inhibitor of PI3Kδ, to determine safety, systemic exposure, together with lung and systemic biomarker profiles (Clinicaltrial.gov: NCT02593539). Induced sputum was captured to measure changes in phospholipids and inflammatory mediators, and blood samples were collected to assess pharmacokinetics of nemiralisib, and systemic biomarkers. Nemiralisib was shown to have an acceptable safety and tolerability profile, with cough being the most common adverse event, and no severe adverse events reported during the study. No meaningful changes in phosphatidylinositol (3,4,5)-trisphosphate (PIP3; the enzyme product of PI3Kδ) or downstream inflammatory markers in induced sputum, were observed following nemiralisib treatment. Similarly, there were no meaningful changes in blood inflammatory markers, or lymphocytes subsets. Systemic levels of nemiralisib were higher in subjects in this study compared to previous observations. While nemiralisib had an acceptable safety profile, there was no convincing evidence of target engagement in the lung following inhaled dosing and no downstream effects observed in either the lung or blood compartments. We speculate that this could be explained by nemiralisib not being retained in the lung for sufficient duration, suggested by the increased systemic exposure, perhaps due to pre-existing structural lung damage. In this study investigating a small number of subjects with APDS, nemiralisib appeared to be safe and well-tolerated. However, data from this study do not support the hypothesis that inhaled treatment with nemiralisib would benefit patients with APDS.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Humanos , Administração por Inalação , Inibidores de Proteínas Quinases , Fosfatidilinositol 3-Quinase
2.
Haematologica ; 99(2): 267-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23975182

RESUMO

Resveratrol, a polyphenolic-stilbene, has received increased attention in the last decade due to its wide range of biological activities. Beta(ß)-thalassemias are inherited red cell disorders, found worldwide, characterized by ineffective erythropoiesis and red cell oxidative damage with reduced survival. We evaluated the effects of low-dose-resveratrol (5 µM) on in vitro human erythroid differentiation of CD34(+) from normal and ß-thalassemic subjects. We found that resveratrol induces accelerated erythroid-maturation, resulting in the reduction of colony-forming units of erythroid cells and increased intermediate and late erythroblasts. In sorted colony-forming units of erythroid cells resveratrol activates Forkhead-box-class-O3, decreases Akt activity and up-regulates anti-oxidant enzymes as catalase. In an in vivo murine model for ß-thalassemia, resveratrol (2.4 mg/kg) reduces ineffective erythropoiesis, increases hemoglobin levels, reduces reticulocyte count and ameliorates red cell survival. In both wild-type and ß-thalassemic mice, resveratrol up-regulates scavenging enzymes such as catalase and peroxiredoxin-2 through Forkhead-box-class-O3 activation. These data indicate that resveratrol inhibits Akt resulting in FoxO3 activation with upregulation of cytoprotective systems enabling the pathological erythroid precursors to resist the oxidative damage and continue to differentiate. Our data suggest that the dual effect of resveratrol on erythropoiesis through activation of FoxO3 transcriptional factor combined with the amelioration of oxidative stress in circulating red cells may be considered as a potential novel therapeutic strategy in treating ß-thalassemia.


Assuntos
Inibidores Enzimáticos/farmacologia , Eritrócitos/metabolismo , Eritropoese/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Estilbenos/farmacologia , Talassemia beta/metabolismo , Animais , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/patologia , Proteína Forkhead Box O3 , Humanos , Masculino , Camundongos , Peroxirredoxinas/metabolismo , Resveratrol , Talassemia beta/tratamento farmacológico , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...