Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35204695

RESUMO

Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.


Assuntos
Histidina , Oxigenases de Função Mista , Sítios de Ligação , Histidina/química , Humanos , Oxigenases de Função Mista/metabolismo , Polissacarídeos/química
2.
Biochemistry ; 59(36): 3347-3358, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818374

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharide substrates oxidatively. First discovered because of their action on recalcitrant crystalline substrates (chitin and cellulose), a number of LPMOs are now reported to act on soluble substrates, including oligosaccharides. However, crystallographic complexes with oligosaccharides have been reported for only a single LPMO so far, an enzyme from the basidiomycete fungus Lentinus similis (LsAA9_A). Here we present a more detailed comparative study of LsAA9_A and an LPMO from the ascomycete fungus Collariella virescens (CvAA9_A) with which it shares 41.5% sequence identity. LsAA9_A is considerably more thermostable than CvAA9_A, and the structural basis for the difference has been investigated. We have compared the patterns of oligosaccharide cleavage and the patterns of binding in several new crystal structures explaining the basis for the product preferences of the two enzymes. Obtaining structural information about complexes of LPMOs with carbohydrates has proven to be very difficult in general judging from the structures reported in the literature thus far, and this can be attributed only partly to the low affinity for small substrates. We have thus evaluated the use of differential scanning fluorimetry as a guide to obtaining complex structures. Furthermore, an analysis of crystal packing of LPMOs and glycoside hydrolases corroborates the hypothesis that active site occlusion is a very significant problem for LPMO-substrate interaction analysis by crystallography, due to their relatively flat and extended substrate binding sites.


Assuntos
Proteínas Fúngicas/metabolismo , Lentinula/enzimologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Oligossacarídeos/metabolismo , Sordariales/enzimologia , Temperatura , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática , Proteínas Fúngicas/química , Oxirredução , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...