Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , Camundongos
2.
J Dermatol ; 50(10): 1321-1329, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37455419

RESUMO

Phospholipase D2 (PLD2), a major isoform of the PLD family, has been reported to regulate inflammatory responses. Thus far, the relevance of PLD2 in psoriasis, an inflammatory skin disease, has not been explored. In the current study, we examined PLD2 expression in the skin of psoriasis patients and the role of PLD2 in an interleukin (IL)-23-induced mouse model of psoriasiform dermatitis. Both in situ hybridization and bulk RNA sequencing showed PLD2 gene expression is significantly higher in lesional relative to non-lesional skin of psoriasis patients or the skin of healthy subjects. PLD2 expression is also enriched in residual lesions from patients on biologic therapies. Murine in vivo studies showed that PLD2 deficiency significantly reduced psoriasiform inflammation in IL-23-injected ears, as reflected by decreases in ear thickness, expression of defensin beta 4A and the S100 calcium binding protein A7A, macrophage infiltrate, and expression of CXCL10 and IL-6. However, the expression of type 17 cytokines, IL-17A and IL-17F, were not reduced. Dual knockout of PLD1 and PLD2 offered little additional protection compared to PLD2 knockout alone in the IL-23 model. In addition, pharmacological inhibition with a pan-PLD1/PLD2 inhibitor also suppressed IL-23-induced psoriasiform dermatitis. Bone-marrow-derived macrophages from wild type (WT) and PLD2 knockout (KO) mice exhibited little difference in viability and sensitivity to lipopolysaccharide and/or interferon gamma, or resiquimod (R848). PLD2 deficiency did not alter the differentiation and function of Th17 cells in an ex vivo study with splenocytes isolated from WT and PLD2 KO mice. Overall, these data suggest that PLD2 may play a role in the pathophysiology of psoriasis. Reducing macrophage infiltrate and cytokine/chemokine production might contribute to an anti-inflammatory effect observed in PLD2 knockout mice. Further studies are required to better understand the mechanisms by which PLD2 contributes to skin lesions in psoriasis patients and psoriasiform dermatitis models.

4.
J Biol Chem ; 290(8): 4573-4589, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25552479

RESUMO

The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/química , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/enzimologia , Doenças Autoimunes/genética , Domínio Catalítico , Linhagem Celular , Humanos , Janus Quinase 3/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
5.
Bioorg Med Chem Lett ; 23(3): 693-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265875

RESUMO

Interest in therapeutic kinase inhibitors continues to grow beyond success in oncology. To date, ATP-mimetic kinase inhibitors have focused primarily on monocyclic and bicyclic heterocyclic cores. We sought to expand on the repertoire of potential cores for kinase inhibition by exploring tricyclic variants of classical bicyclic hinge binding motifs such as pyrrolopyridine and pyrrolopyrazine. Herein we describe the syntheses of eight alternative tricyclic cores as well as in vitro screening results for representative kinases of potential therapeutic interest.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases , Células Cultivadas , Ciclização , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/síntese química , Pirazinas/química , Pirazinas/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Pirróis/síntese química , Pirróis/química , Pirróis/farmacologia
6.
Bioorg Med Chem Lett ; 20(1): 334-7, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19926477
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...