Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Voice ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37925332

RESUMO

OBJECTIVES: Increased cognitive load has been observed to correlate with decreased vocal fold perturbation, reduced additive noise, increased periodicity, and a higher rate of vocal fold vibration. The aim of this study was to explore whether vocal fold vibratory patterns can serve as indicators of increased cognitive load in nonbalanced bilingual speakers when they use their weaker language. STUDY DESIGN: This is a comparative experimental study with a within-speaker design. METHODS: We recorded a total of 95 bilingual speakers of Low German (LG), which is an endangered language spoken in Northern Germany, and Standard High German (HG). Participants completed four tasks in both languages: engaging in free narration, describing a picture story, giving directions, and reading a narrative passage. For the last three tasks, the difficulty levels were varied. Measurements included jitter, shimmer, harmonics-to-noise ratio (HNR), cepstral peak prominence (CPP), the proportion of creak, pitch level, and pitch span. Changes in voice characteristics were examined both in terms of the participants' age and their language dominance. For the latter, we calculated a dominance score derived from age of acquisition, frequency of use, and self-perceived linguistic competence in the two languages. RESULTS: Younger speakers showed a higher dominance of HG over LG, which decreased with age. Younger and more HG-dominant speakers exhibited lower jitter and shimmer, along with a higher HNR and a lower creak proportion in LG compared to HG. CPP and pitch level were higher in LG but showed little variation with age or language dominance. No clear effects on pitch span were observed. Overall, age was a slightly more reliable predictor than language dominance. Acoustic differences in voice quality were about equally detectable across the different speech tasks while varying difficulty levels had minimal impact. CONCLUSIONS: The variation in vocal fold vibratory patterns suggests that younger and more HG-dominant speakers experienced greater cognitive load when speaking LG. Given that increased cognitive load may negatively impact language usage, voice analysis opens up new possibilities for evaluating the future prospects of endangered languages.

2.
Front Psychol ; 14: 1133859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448717

RESUMO

A person's first language (L1) affects the way they acquire speech in a second language (L2). However, we know relatively little about the role different varieties of the L1 play in the acquisition of L2 speech. This study focuses on German (L1) learners of English (L2) and asks whether the degree to which German speakers distinguish between the two vowels /eː/ and /ɛː/ in their L1 has an impact on how well these individuals identify /æ/ and discriminate between the two English vowels /ɛ/ and /æ/. These two English vowels differ in both vowel quality and duration (/æ/ is longer than /ɛ/). We report on an identification and a discrimination experiment. In the first study, participants heard a sound file and were asked to indicate whether they heard "pen" or "pan" (or "pedal" or "paddle"). The stimuli differed from each other in terms of both vowel quality (11 steps on a spectral continuum from an extreme /æ/ to an extreme /ɛ/) and duration (short, middle, long). In the second study, participants had to signal whether two sound files they were exposed to differed from each other. We modeled the percentage of /æ/ ("pan," "paddle") selection (identification task only, binomial logistic regression), accuracy (discrimination task only, binomial logistic regression), and reaction time (identification and discrimination tasks, linear mixed effects models) by implementing the German Pillai score as a measure of vowel overlap in our analysis. Each participant has an individual Pillai score, which ranges from 0 (= merger of L1 German /eː/ and /ɛː/) to 1 (=maintenance of the contrast between L1 German /eː/ and /ɛː/) and had been established, prior to the perception experiments reported here, in a production study. Although the findings from the discrimination study remain inconclusive, the results from the identification test support the hypothesis that maintaining the vowel contrast in the L1 German leads to a more native-like identification of /æ/ in L2 English. We conclude that sociolinguistic variation in someone's L1 can affect L2 acquisition.

3.
Angew Chem Int Ed Engl ; 60(11): 5673-5678, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245206

RESUMO

A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.

4.
Chemistry ; 22(40): 14104-25, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27417259

RESUMO

This Review covers design strategies, synthetic challenges, host-guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal-organic frameworks, but the main focus is on discrete coordination architectures, that is, metal-mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana-shaped bis-pyridyl ligands together with square-planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double-cages obeying the formula [M4 L8 ]. The peculiar topology of these double-cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template-controlled selectivity. In stimuli-responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self-assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.

5.
J Am Chem Soc ; 138(26): 8279-87, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258549

RESUMO

Photon-powered charge separation is achieved in a supramolecular architecture based on the dense packing of functional building blocks. Therefore, self-assembled dimers of interpenetrated coordination cages consisting of redoxactive chromophors were synthesized in a single assembly step starting from easily accessible ligands and Pd(II) cations. Two backbones consisting of electron rich phenothiazine (PTZ) and electron deficient anthraquinone (ANQ) were used to assemble either homo-octameric or mixed-ligand double cages. The electrochemical and spectroscopic properties of the pure cages, mixtures of donor and acceptor cages and the mixed-ligand cages were compared by steady-state UV-vis and transient absorption spectroscopy, supported by cyclic voltammetry and spectroelectrochemistry. Only the mixed-ligand cages, allowing close intra-assembly communication between the donors and acceptors, showed the evolution of characteristic PTZ radical cation and ANQ radical anion features upon excitation in the transient spectra. In contrast, excitation of the mixtures of the homo-octameric donor and acceptor cages in solution did not lead to any signs of electron transfer. Densely packed photo- and redox-functional self-assemblies promise molecular-level control over the morphology of the charge separation layer in future photovoltaic applications.

6.
Cell Mol Life Sci ; 73(13): 2583-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26803842

RESUMO

Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.


Assuntos
Apoptose , Conexinas/análise , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Morte Celular , Conexinas/metabolismo , Distrofina/análise , Distrofina/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , NF-kappa B/análise , NF-kappa B/metabolismo , Receptores Purinérgicos P2X7/análise , Receptores Purinérgicos P2X7/metabolismo
7.
Phys Chem Chem Phys ; 16(40): 21930-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25204834

RESUMO

A series of self-assembled coordination cages [Pd4L(n)8] based on a phenothiazine backbone has been investigated by means of Raman spectroscopy in solution and by Surface Enhanced Raman Scattering (SERS) on a nanostructured Au surface. The experiments demonstrate that the cages can be clearly distinguished from their constituting ligands by their Raman spectroscopic signatures. Furthermore, the structural integrity of the interpenetrated coordination cages upon deposition on the Au surface was demonstrated for the first time. The signal assignment of the experimental vibrational spectra was supported by Density Functional Theory (DFT) calculations on suitable molecular models.

8.
Dalton Trans ; 43(11): 4587-92, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24519242

RESUMO

Previously, we introduced a series of anion-binding interpenetrated double-cages based on phenothiazine and its mono- and di-S-oxygenated derivatives. Here, we complete the structural comparison of the three related assemblies by an X-ray single crystal analysis of the sulfone derivative. We further show that the three palladium cages coexist in solution upon post-assembly mixing due to the very slow ligand exchange whereas treatment of binary mixtures of the corresponding ligands with Pd(II) leads to the formation of mixed cages comprising a statistical ligand distribution. In contrast, mixtures of one of these ligands with a shorter ligand derivative lead to narcissistic self-assembly into a double-cage and a coexisting small monomeric cage, regardless of the order of mixing and Pd(II) addition.

9.
Proc Natl Acad Sci U S A ; 110(40): 16229-34, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043768

RESUMO

Denervation of skeletal muscles induces atrophy, preceded by changes in sarcolemma permeability of causes not yet completely understood. Here, we show that denervation-induced Evans blue dye uptake in vivo of fast, but not slow, myofibers was acutely inhibited by connexin (Cx) hemichannel/pannexin1 (Panx1) channel and purinergic ionotropic P2X7 receptor (P2X7R) blockers. Denervated myofibers showed up-regulation of Panx1 and de novo expression of Cx39, Cx43, and Cx45 hemichannels as well as P2X7Rs and transient receptor potential subfamily V, member 2, channels, all of which are permeable to small molecules. The sarcolemma of freshly isolated WT myofibers from denervated muscles also showed high hemichannel-mediated permeability that was slightly reduced by blockade of Panx1 channels or the lack of Panx1 expression, but was completely inhibited by Cx hemichannel or P2X7R blockers, as well as by degradation of extracellular ATP. However, inhibition of transient receptor potential subfamily V, member 2, channels had no significant effect on membrane permeability. Moreover, activation of the transcription factor NFκB and higher mRNA levels of proinflammatory cytokines (TNF-α and IL-1ß) were found in denervated WT but not Cx43/Cx45-deficient muscles. The atrophy observed after 7 d of denervation was drastically reduced in Cx43/Cx45-deficient but not Panx1-deficient muscles. Therefore, expression of Cx hemichannels and P2X7R promotes a feed-forward mechanism activated by extracellular ATP, most likely released through hemichannels, that activates the inflammasome. Consequently, Cx hemichannels are potential targets for new therapeutic agents to prevent or reduce muscle atrophy induced by denervation of diverse etiologies.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Conexinas/metabolismo , Denervação , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcolema/metabolismo , Análise de Variância , Animais , Conexina 43/deficiência , Azul Evans/metabolismo , Masculino , Microscopia de Fluorescência , Músculo Esquelético/inervação , Ratos , Ratos Sprague-Dawley
10.
Dalton Trans ; 42(45): 15906-10, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23942941

RESUMO

Previously, we have reported on the quantitative self-assembly of a series of interpenetrated double-cages [Pd4Ligand8] with ligands based on various organic backbones. For dibenzosuberone-based cages it was shown that anion binding in the outer two pockets follows an allosteric mechanism. Herein we wish to report the anion binding capabilities of three related phenothiazine cages. We present a systematic comparison of the relative halide (Cl(-) and Br(-)) binding affinities and the structural rearrangements of four double-cages based on NMR titrations, NOESY experiments and electronic structure calculations.


Assuntos
Ânions/química , Boro/química , Cloro/química , Complexos de Coordenação/química , Fenotiazinas/química , Ligantes , Modelos Moleculares
11.
Angew Chem Int Ed Engl ; 52(38): 10102-6, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23881819

RESUMO

A breath of fresh air is sufficient for the eightfold S-monooxygenation of an interpenetrated double cage based on eight phenothiazine ligands and four square-planar-coordinated Pd(II) cations. Besides these two cages, which were both characterized by X-ray crystallography, an eightfold S-dioxygenated double-cage was obtained under harsher oxidation conditions.


Assuntos
Compostos Orgânicos/química , Fenotiazinas/química , Estrutura Molecular , Oxirredução
12.
Basic Res Cardiol ; 108(3): 348, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23558439

RESUMO

The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.


Assuntos
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Fatores Etários , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Conexina 43/química , Conexina 43/genética , Eletrocardiografia Ambulatorial , Mapeamento Epicárdico , Genótipo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Telemetria , Fatores de Tempo , Transfecção , Proteína da Zônula de Oclusão-1/metabolismo
13.
Neuropharmacology ; 75: 594-603, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23583931

RESUMO

During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Potenciais de Ação/efeitos dos fármacos , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Conexinas/antagonistas & inibidores , Conexinas/genética , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Etídio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Miosinas/metabolismo , Ácidos Oleicos/farmacologia , Fosforilação/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Serina/genética , Serina/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(49): 20107-12, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169657

RESUMO

Connexins have been implicated in the regulation of precursor cell migration and proliferation during embryonic development of the mammalian brain. However, their function in postnatal neurogenesis is unclear. Here we demonstrate that connexin (Cx) 45 is expressed in transit-amplifying cells and neuroblasts in the postnatal subventricular zone (SVZ) and modulated the proliferation of SVZ-derived precursor cells in vivo. Thus, overexpression of Cx45 by retroviral injections increased the proliferation of Mash-1-positive transit-amplifying precursor cells in the SVZ. Conversely, conditional deletion of Cx45 in precursor cells decreased proliferation. Finally, we established that Cx45 positively influences cell cycle reentry via ATP signaling that involves intracellular calcium stores and ERK1/2 signaling.


Assuntos
Conexinas/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina , Proliferação de Células , Ventrículos Laterais/metabolismo , Camundongos
15.
Circ Res ; 111(12): 1528-38, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22982984

RESUMO

RATIONALE: The gap junctional protein connexin (Cx) 45 is strongly expressed in the early embryonic myocardium. In the adult hearts of mice and humans, the expression mainly is restricted to the cardiac conduction system. Cx45 plays an essential role for development and function of the embryonic heart because general and cardiomyocyte-directed deficiencies of Cx45 in mice lead to embryonic lethality attributable to morphological and functional cardiovascular defects. The function of Cx45 in the adult mouse has not yet been cleared. OBJECTIVE: To clarify the function of Cx45 in the adult mouse heart. METHODS AND RESULTS: To circumvent the embryonic lethality resulting from Cx45 deficiency, mice were generated in which deletion of Cx45 specifically was induced in cardiomyocytes of adult mice. These Cx45-deficient mice were viable but showed a decrease in atrioventricular nodal conductivity. In addition, the Cx30.2 protein that is coexpressed with Cx45 in the cardiac conduction system was posttranscriptionally reduced by 70% in mutant hearts. Furthermore, deletion of both Cx45 and Cx30.2 resulted in viable mice that, however, showed stronger impairment of atrioventricular nodal conduction than the single Cx45-deficient mice. CONCLUSIONS: Cx45 is required for optimal impulse propagation in the atrioventricular node and stabilizes the level of the coexpressed Cx30.2 protein in the adult mouse heart. In contrast to the embryo, Cx45 is not essential for the viability of adult mice.


Assuntos
Nó Atrioventricular/embriologia , Nó Atrioventricular/metabolismo , Conexinas/fisiologia , Coração/embriologia , Coração/fisiologia , Animais , Conexinas/deficiência , Conexinas/genética , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/metabolismo , Camundongos , Camundongos Knockout
16.
Channels (Austin) ; 5(6): 489-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22127232

RESUMO

Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/µg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conexina 43/genética , Conexinas/genética , Regulação para Baixo , Junções Comunicantes/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Fosforilação/genética
17.
J Cell Sci ; 123(Pt 20): 3605-15, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20930146

RESUMO

The gap junction protein connexin-45 (Cx45) is expressed in the conduction system of the heart and in certain neurons of the retina and brain. General and cardiomyocyte-directed deficiencies of Cx45 in mice lead to lethality on embryonic day 10.5 as a result of cardiovascular defects. Neuron-directed deletion of Cx45 leads to defects in transmission of visual signals. Connexin-36 (Cx36) is co-expressed with Cx45 in certain types of retinal interneurons. To determine whether these two connexins have similar functions and whether Cx36 can compensate for Cx45, we generated knock-in mice in which DNA encoding Cx45 was replaced with that encoding Cx36. Neuron-directed replacement of Cx45 with Cx36 resulted in viable animals. Electroretinographic and neurotransmitter coupling analyses demonstrated functional compensation in the retina. By contrast, general and cardiomyocyte-directed gene replacement led to lethality on embryonic day 11.5. Mutant embryos displayed defects in cardiac morphogenesis and conduction. Thus, functional compensation of Cx45 by Cx36 did not occur during embryonic heart development. These data suggest that Cx45 and Cx36 have similar functions in the retina, whereas Cx45 fulfills special functions in the developing heart that cannot be compensated by Cx36.


Assuntos
Conexinas/metabolismo , Embrião de Mamíferos/metabolismo , Coração/embriologia , Neurônios/metabolismo , Retina/metabolismo , Animais , Conexinas/genética , Feminino , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína delta-2 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...