Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3660-3674, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38835217

RESUMO

Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous in vitro reassembly studies, we first investigated the effectiveness of in vitro reassembly and cargo-loading of two size classes of encapsulins Thermotoga maritima T = 1 and Myxococcus xanthus T = 3, using superfolder Green Fluorescent Protein. We show that the empty T. maritima capsid reassembles with higher yield than the M. xanthus capsid and that in vitro loading promotes the formation of the M. xanthus T = 3 capsid form over the T = 1 form, while overloading with cargo results in malformed T. maritima T = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the T. maritima encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that in vitro loading of transketolase into the T. maritima T = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of in vitro assembled encapsulins with applications in cargo stabilization.


Assuntos
Estabilidade Enzimática , Tamanho da Partícula , Thermotoga maritima , Transcetolase , Transcetolase/metabolismo , Transcetolase/química , Thermotoga maritima/enzimologia , Teste de Materiais , Materiais Biocompatíveis/química
2.
ACS Nano ; 17(24): 25279-25290, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38065569

RESUMO

Cyanobacteria offer great potential as alternative biotechnological hosts due to their photoautotrophic capacities. However, in comparison to established heterotrophic hosts, several key aspects, such as product titers, are still lagging behind. Nanobiotechnology is an emerging field with great potential to improve existing hosts, but so far, it has barely been explored in microbial photosynthetic systems. Here, we report the establishment of large proteinaceous nanofilaments in the unicellular model cyanobacterium Synechocystis sp. PCC 6803 and the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Transmission electron microscopy and electron tomography demonstrated that expression of pduA*, encoding a modified bacterial microcompartment shell protein, led to the generation of bundles of longitudinally aligned nanofilaments in S. elongatus UTEX 2973 and shorter filamentous structures in Synechocystis sp. PCC 6803. Comparative proteomics showed that PduA* was at least 50 times more abundant than the second most abundant protein in the cell and that nanofilament assembly had only a minor impact on cellular metabolism. Finally, as a proof-of-concept for co-localization with the filaments, we targeted a fluorescent reporter protein, mCitrine, to PduA* by fusion with an encapsulation peptide that natively interacts with PduA. The establishment of nanofilaments in cyanobacterial cells is an important step toward cellular organization of heterologous pathways and the establishment of cyanobacteria as next-generation hosts.


Assuntos
Synechocystis , Synechocystis/metabolismo , Fotossíntese , Transporte Proteico , Proteínas de Bactérias/metabolismo
3.
Exp Lung Res ; 49(1): 142-151, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37480230

RESUMO

Introduction: In human and experimentally induced asthma, a dysfunction of the intra-alveolar-surface active agent (surfactant) has been demonstrated. Type II alveolar epithelial cells (AEII) synthesize, secrete and recycle surfactant. Prior to secretion, intracellular surfactant is stored in specific secretory organelles of AEII. The lamellar bodies (Lb) represent its ultrastructural correlate. The aim of this study was to investigate whether disturbances of the intra-alveolar surfactant are accompanied by alterations in the intracellular surfactant.Material and Methods: Brown-Norway rats were sensitized twice with ovalbumin (OVA) and heat killed Bordetella pertussis bacilli. During airway challenge, an aerosol of 5% ovalbumin/saline solution (0.25 l/min) was nebulized. 24 h after airway challenge, lungs were fixed by vascular perfusion. AEII and their Lb were characterized stereologically by light and electron microscopy.Results: In both groups, AEII were structurally intact. The number of AEII per lung and their number-weighted mean volume did not differ (controls: 49 × 106, 393 µm3; asthmatics: 44 × 106, 390 µm3). A mean of 90 Lb in AEII of asthmatics and of 93 Lb in AEII of controls were evaluated. The Lb mean total volume was 59 µm in asthmatics and 68 µm in controls. Values of both parameters did not reach significance. Also, the size distribution and mean volume of Lb was not influenced by asthma induction, because the volume weighted mean volume of Lb (2.18 µm in asthmatics compared to 1.87 µm in controls) and the numerical weighted mean volume (0.96 µm in asthmatics and 0.75 µm in controls) were comparable in both groups.Conclusion: The obtained results suggest that asthma-induced surfactant dysfunction is not related to disturbances in the intracellular surfactant´s ultrastructural correlates.


Assuntos
Asma , Surfactantes Pulmonares , Humanos , Animais , Ratos , Tensoativos/farmacologia , Ovalbumina , Células Epiteliais Alveolares , Asma/induzido quimicamente
4.
Vaccines (Basel) ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36680014

RESUMO

Porcine circovirus type 2d (PCV2d) is becoming the predominant PCV genotype and considerably affects the global pig industry. Nevertheless, currently, no commercial PCV2d vaccine is available. Preventing and controlling the disease caused by PCV2d is therefore based on other genotype-based vaccines. However, their production platforms are laborious, limited in expression level, and relatively expensive for veterinary applications. To address these challenges, we have developed a simple and cost-efficient platform for a novel PCV2d vaccine production process, using fed-batch E. coli fermentation followed by cell disruption and filtration, and a single purification step via cation exchange chromatography. The process was developed at bench scale and then pilot scale, where the PCV2d subunit protein yield was approximately 0.93 g/L fermentation volume in a short production time. Moreover, we have successfully implemented this production process at two different sites, in Southeast Asia and Europe. This demonstrates transferability and the high potential for successful industrial production.

5.
Synth Syst Biotechnol ; 6(3): 231-241, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541345

RESUMO

The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice.

6.
Vaccines (Basel) ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669126

RESUMO

Tandem-core hepatitis B core antigen (HBcAg) virus-like particles (VLPs), in which two HBcAg monomers are joined together by a peptide linker, can be used to display two different antigens on the VLP surface. We produced universal influenza vaccine candidates that use this scaffold in an Escherichia coli-based cell-free protein synthesis (CFPS) platform. We then used the CFPS system to rapidly test modifications to the arginine-rich region typically found in wild-type HBcAg, the peptide linkers around the influenza antigen inserts, and the plasmid vector backbone to improve titer and quality. Using a minimal plasmid vector backbone designed for CFPS improved titers by at least 1.4-fold over the original constructs. When the linker lengths for the influenza inserts were more consistent in length and a greater variety of codons for glycine and serine were utilized, titers were further increased to over 70 µg/mL (4.0-fold greater than the original construct) and the presence of lower molecular weight product-related impurities was significantly reduced, although improvements in particle assembly were not seen. Furthermore, any constructs with the C-terminal arginine-rich region removed resulted in asymmetric particles of poor quality. This demonstrates the potential for CFPS as a screening platform for VLPs.

7.
Biotechnol Prog ; 37(1): e3062, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761750

RESUMO

Cell-free protein synthesis (CFPS) is an established method for rapid recombinant protein production. Advantages like short synthesis times and an open reaction environment make CFPS a desirable platform for new and difficult-to-express products. Most recently, interest has grown in using the technology to make larger amounts of material. This has been driven through a variety of reasons from making site specific antibody drug conjugates, to emergency response, to the safe manufacture of toxic biological products. We therefore need robust methods to determine the appropriate reaction conditions for product expression in CFPS. Here we propose a process development strategy for Escherichia coli lysate-based CFPS reactions that can be completed in as little as 48 hr. We observed the most dramatic increases in titer were due to the E. coli strain for the cell extract. Therefore, we recommend identifying a high-producing cell extract for the product of interest as a first step. Next, we manipulated the plasmid concentration, amount of extract, temperature, concentrated reaction mix pH levels, and length of reaction. The influence of these process parameters on titer was evaluated through multivariate data analysis. The process parameters with the highest impact on titer were subsequently included in a design of experiments to determine the conditions that increased titer the most in the design space. This proposed process development strategy resulted in superfolder green fluorescent protein titers of 0.686 g/L, a 38% improvement on the standard operating conditions, and hepatitis B core antigen titers of 0.386 g/L, a 190% improvement.


Assuntos
Sistema Livre de Células/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/genética
8.
Microbiologyopen ; 9(5): e1010, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32053746

RESUMO

Metabolosomes, catabolic bacterial microcompartments (BMCs), are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multicomponent protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation before the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variations in enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self-assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metalotioneína/metabolismo , Organelas/enzimologia , Peptídeos/metabolismo , Bactérias/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Genes Bacterianos , Redes e Vias Metabólicas , Organelas/ultraestrutura , Peptídeos/genética , Transporte Proteico , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Biochem Soc Trans ; 47(3): 765-777, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31235547

RESUMO

Bacterial microcompartments (BMCs) are protein-bound prokaryotic organelles, discovered in cyanobacteria more than 60 years ago. Functionally similar to eukaryotic cellular organelles, BMCs compartment metabolic activities in the cytoplasm, foremost to increase local enzyme concentration and prevent toxic intermediates from damaging the cytosolic content. Advanced knowledge of the functional and structural properties of multiple types of BMCs, particularly over the last 10 years, have highlighted design principles of microcompartments. This has prompted new research into their potential to function as programmable synthetic nano-bioreactors and novel bio-materials with biotechnological and medical applications. Moreover, due to the involvement of microcompartments in bacterial pathogenesis and human health, BMCs have begun to gain attention as potential novel drug targets. This mini-review gives an overview of important synthetic biology developments in the bioengineering of BMCs and a perspective on future directions in the field.


Assuntos
Bactérias/metabolismo , Bioengenharia , Organelas/metabolismo , Redes e Vias Metabólicas
10.
Nat Commun ; 9(1): 3413, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143644

RESUMO

Bacterial microcompartments, BMCs, are proteinaceous organelles that encase a specific metabolic pathway within a semi-permeable protein shell. Short encapsulation peptides can direct cargo proteins to the lumen of the compartments. However, the fusion of such peptides to non-native proteins does not guarantee encapsulation and often causes aggregation. Here, we report an approach for targeting recombinant proteins to BMCs that utilizes specific de novo coiled-coil protein-protein interactions. Attachment of one coiled-coil module to PduA (a component of the BMC shell) allows targeting of a fluorescent protein fused to a cognate coiled-coil partner. This interaction takes place on the outer surface of the BMC. The redesign of PduA to generate an N-terminus on the luminal side of the BMC results in intact compartments to which proteins can still be targeted via the designed coiled-coil system. This study provides a strategy to display proteins on the surface or within the lumen of the BMCs.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/ultraestrutura , Proteínas de Bactérias/química , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Ligação Proteica , Estrutura Secundária de Proteína
11.
Small ; 14(19): e1704020, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573556

RESUMO

Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes.


Assuntos
Proteínas de Bactérias/química , Nanotubos/química , Escherichia coli/metabolismo , Modelos Moleculares , Nanotubos/ultraestrutura
12.
Nat Chem Biol ; 14(2): 142-147, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227472

RESUMO

We have developed a system for producing a supramolecular scaffold that permeates the entire Escherichia coli cytoplasm. This cytoscaffold is constructed from a three-component system comprising a bacterial microcompartment shell protein and two complementary de novo coiled-coil peptides. We show that other proteins can be targeted to this intracellular filamentous arrangement. Specifically, the enzymes pyruvate decarboxylase and alcohol dehydrogenase have been directed to the filaments, leading to enhanced ethanol production in these engineered bacterial cells compared to those that do not produce the scaffold. This is consistent with improved metabolic efficiency through enzyme colocation. Finally, the shell-protein scaffold can be directed to the inner membrane of the cell, demonstrating how synthetic cellular organization can be coupled with spatial optimization through in-cell protein design. The cytoscaffold has potential in the development of next-generation cell factories, wherein it could be used to organize enzyme pathways and metabolite transporters to enhance metabolic flux.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Álcool Desidrogenase/metabolismo , Bacillus/metabolismo , Proteínas de Bactérias/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Domínios Proteicos , Piruvato Descarboxilase/metabolismo
13.
FEBS Lett ; 591(6): 833-841, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28214355

RESUMO

Amino-terminal acetylation is a ubiquitous protein modification affecting the majority of eukaryote proteins to regulate stability and function. We describe an optimised recombinant expression system for rapid production of amino terminal-acetylated proteins within bacteria. We go on to describe the system's use in a fluorescence based in vivo assay for use in the high-throughput screen to identify drugs that impact amino-terminal acetylation-dependent oligomerisation. These new tools and protocols will allow researchers to enhance routine recombinant protein production and identify new molecules for use in research and clinical applications.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Xenobióticos/farmacologia , alfa-Sinucleína/química , Acetilação/efeitos dos fármacos , Western Blotting , Escherichia coli/genética , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Biotechnol J ; 12(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28105684

RESUMO

Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate-synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co-expression of E. coli PPK1 fused with a microcompartment-targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8-fold compared with non-targeted PPK1. Co-expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co-expression of PPX with non-targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polifosfatos/isolamento & purificação , Purificação da Água/métodos , Clonagem Molecular , Proteínas de Escherichia coli/genética , Genes Bacterianos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Águas Residuárias/química
15.
Sci Rep ; 6: 36899, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845382

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelles that are found in a broad range of bacteria and are composed of an outer shell that encases an enzyme cargo representing a specific metabolic process. The outer shell is made from a number of different proteins that form hexameric and pentameric tiles, which interact to allow the formation of a polyhedral edifice. We have previously shown that the Citrobacter freundii BMC associated with 1,2-propanediol utilization can be transferred into Escherichia coli to generate a recombinant BMC and that empty BMCs can be formed from just the shell proteins alone. Herein, a detailed structural and proteomic characterization of the wild type BMC is compared to the recombinant BMC and a number of empty BMC variants by 2D-gel electrophoresis, mass spectrometry, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Specifically, it is shown that the wild type BMC and the recombinant BMC are similar in terms of composition, size, shape and mechanical properties, whereas the empty BMC variants are shown to be smaller, hollow and less malleable.


Assuntos
Citrobacter freundii/metabolismo , Organelas/química , Proteínas de Bactérias/metabolismo , Bioengenharia , Citrobacter freundii/química , Citrobacter freundii/ultraestrutura , Organelas/metabolismo , Organelas/ultraestrutura , Propilenoglicol/metabolismo , Proteômica
16.
Angew Chem Int Ed Engl ; 55(37): 11281-6, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27355790

RESUMO

B12 is unique among the vitamins as it is biosynthesized only by certain prokaryotes. The complexity of its synthesis relates to its distinctive cobalt corrin structure, which is essential for B12 biochemistry and renders coenzyme B12 (AdoCbl) so intriguingly suitable for enzymatic radical reactions. However, why is cobalt so fit for its role in B12 -dependent enzymes? To address this question, we considered the substitution of cobalt in AdoCbl with rhodium to generate the rhodium analogue 5'-deoxy-5'-adenosylrhodibalamin (AdoRbl). AdoRbl was prepared by de novo total synthesis involving both biological and chemical steps. AdoRbl was found to be inactive in vivo in microbial bioassays for methionine synthase and acted as an in vitro inhibitor of an AdoCbl-dependent diol dehydratase. Solution NMR studies of AdoRbl revealed a structure similar to that of AdoCbl. However, the crystal structure of AdoRbl revealed a conspicuously better fit of the corrin ligand for Rh(III) than for Co(III) , challenging the current views concerning the evolution of corrins.


Assuntos
Cobamidas/farmacologia , Corrinoides/síntese química , Corrinoides/farmacologia , Desidrogenase do Álcool de Açúcar/antagonistas & inibidores , Citrobacter freundii/enzimologia , Cobamidas/química , Corrinoides/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Desidrogenase do Álcool de Açúcar/metabolismo
17.
Metab Eng ; 36: 48-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969252

RESUMO

Bacterial microcompartments (BMCs) enhance the breakdown of metabolites such as 1,2-propanediol (1,2-PD) to propionic acid. The encapsulation of proteins within the BMC is mediated by the presence of targeting sequences. In an attempt to redesign the Pdu BMC into a 1,2-PD synthesising factory using glycerol as the starting material we added N-terminal targeting peptides to glycerol dehydrogenase, dihydroxyacetone kinase, methylglyoxal synthase and 1,2-propanediol oxidoreductase to allow their inclusion into an empty BMC. 1,2-PD producing strains containing the fused enzymes exhibit a 245% increase in product formation in comparison to un-tagged enzymes, irrespective of the presence of BMCs. Tagging of enzymes with targeting peptides results in the formation of dense protein aggregates within the cell that are shown by immuno-labelling to contain the vast majority of tagged proteins. It can therefore be concluded that these protein inclusions are metabolically active and facilitate the significant increase in product formation.


Assuntos
Vias Biossintéticas/fisiologia , Compartimento Celular/fisiologia , Escherichia coli/fisiologia , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Complexos Multienzimáticos/genética , Células Artificiais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas/fisiologia , Complexos Multienzimáticos/metabolismo , Propilenoglicol/isolamento & purificação , Propilenoglicol/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
Environ Microbiol ; 18(9): 2886-98, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26404097

RESUMO

Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease.


Assuntos
Colina/metabolismo , Proteus mirabilis/metabolismo , Anaerobiose , Liases/genética , Mutagênese , Proteus mirabilis/genética , Proteus mirabilis/crescimento & desenvolvimento , Proteus mirabilis/ultraestrutura
19.
ACS Synth Biol ; 3(7): 454-465, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24933391

RESUMO

Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol.


Assuntos
Reatores Biológicos , Etanol/metabolismo , Peptídeos/química , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrobacter freundii/enzimologia , Espectroscopia de Ressonância Magnética , Engenharia Metabólica , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Piruvato Descarboxilase/química , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
20.
J Biol Chem ; 289(32): 22377-84, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24873823

RESUMO

Bacterial microcompartments are large proteinaceous assemblies that are found in the cytoplasm of some bacteria. These structures consist of proteins constituting a shell that houses a number of enzymes involved in specific metabolic processes. The 1,2-propanediol-utilizing microcompartment is assembled from seven different types of shell proteins, one of which is PduA. It is one of the more abundant components of the shell and intriguingly can form nanotubule-like structures when expressed on its own in the cytoplasm of Escherichia coli. We propose a model that accounts for the size and appearance of these PduA structures and underpin our model using a combinatorial approach. Making strategic mutations at Lys-26, Val-51, and Arg-79, we targeted residues predicted to be important for PduA assembly. We present the effect of the amino acid residue substitution on the phenotype of the PduA higher order assemblies (transmission electron microscopy) and the crystal structure of the K26D mutant with one glycerol molecule bound to the central pore. Our results support the view that the hexamer-hexamer interactions seen in PduA crystals persist in the cytoplasmic structures and reveal the profound influence of the two key amino acids, Lys-26 and Arg-79, on tiling, not only in the crystal lattice but also in the bacterial cytoplasm. Understanding and controlling PduA assemblies is valuable in order to inform manipulation for synthetic biology and biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Corpos de Inclusão/química , Corpos de Inclusão/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...