Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Res Social Adm Pharm ; 20(5): 498-505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365521

RESUMO

BACKGROUND: Optimising the management of vancomycin by achieving target therapeutic concentrations early during therapy has been associated with reduced mortality and morbidity. Despite the availability of guidelines and training, the management of vancomycin remains suboptimal. OBJECTIVES: The primary outcome was the development of interventions and associated implementation strategies to optimise the management of vancomycin therapy. This paper describes how co-design process was used to build a theory informed intervention package, which was implemented across a wide range of in-patient hospital settings in Queensland, Australia. METHODS: This multiple methods study was conducted in four phases: 1) a baseline audit to identify the nature of the problem and associated determinants informed by stakeholder interviews 2) mapping these findings to the Theoretical Domains Framework (TDF) to identify behavioural correlates and modifiers 3) prioritising the behavioural modifiers and associated implementation strategies to inform a protype of the intervention in a series of co-design sessions and 4) implementing and evaluating the intervention package. The study was conducted across the four teaching hospitals in a large Queensland Hospital and Health Service across multiple healthcare disciplines namely nurses, doctors, and pharmacists. This intervention package was subsequently implemented across Queensland Health with the support of the local champions under the guidance of the steering group. RESULTS: Clinicians identified that a multifaceted intervention package and training which can be tailored to the health-care professional disciplines, would be best suited to shift clinician behaviour to align with guidelines. The findings from the co-design process aligned with theory-informed intervention package. Each of the intervention strategies varied in their frequency and popularity of use. CONCLUSIONS: The use of theory-informed and participatory approach assisted with the intervention development process and aligned the intervention content with the priorities of stakeholders. The TDF provided a structured process for developing intervention content which is both acceptable and useful to stakeholders and may improve the management of vancomycin.


Assuntos
Pessoal de Saúde , Vancomicina , Humanos , Vancomicina/uso terapêutico , Pessoal de Saúde/educação , Austrália
2.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37171196

RESUMO

Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with fast MAS, we have developed a low-order correlation in Liouville space model based on the work of Dumez et al. (J. Chem. Phys. 33, 224501, 2010). Specifically, we introduce a new method for basis set selection, which accounts for the resonance-offset dependence at fast MAS. Furthermore, we consider the necessity of including chemical shift, both isotropic and anisotropic, in the modeling of spin diffusion. Using this model, we explore how different experimental factors change the nature of spin diffusion. Then, we show case studies to exemplify the issues that arise in using spin diffusion techniques at fast spinning. We show that the efficiency of polarization transfer via spin diffusion occurring within a deuterated and 100% back-exchanged protein sample at 60 kHz MAS is almost entirely dependent on resonance offset. We additionally identify temperature-dependent magnetization transfer in beta-aspartyl L-alanine, which could be explained by the influence of an incoherent relaxation-based nuclear Overhauser effect.

3.
Angew Chem Int Ed Engl ; 62(28): e202302602, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37027005

RESUMO

We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.

4.
J Pharm Sci ; 112(7): 1915-1928, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36868358

RESUMO

Lorlatinib is an active pharmaceutical ingredient (API) used in the treatment of lung cancer. Here, an NMR crystallography analysis is presented whereby the single-crystal X-ray diffraction structure (CSD: 2205098) determination is complemented by multinuclear (1H, 13C, 14/15N, 19F) magic-angle spinning (MAS) solid-state NMR and gauge-including projector augmented wave (GIPAW) calculation of NMR chemical shifts. Lorlatinib crystallises in the P21 space group, with two distinct molecules in the asymmetric unit cell, Z' = 2. Three of the four NH2 hydrogen atoms form intermolecular hydrogen bonds, N30-H…N15 between the two distinct molecules and N30-H…O2 between two equivalent molecules. This is reflected in one of the NH21H chemical shifts being significantly lower, 4.0 ppm compared to 7.0 ppm. Two-dimensional 1H-13C, 14N-1H and 1H (double-quantum, DQ)-1H (single-quantum, SQ) MAS NMR spectra are presented. The 1H resonances are assigned and specific HH proximities corresponding to the observed DQ peaks are identified. The resolution enhancement at a 1H Larmor frequency of 1 GHz as compared to 500 or 600 MHz is demonstrated.


Assuntos
Pirazóis , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X
5.
Phys Chem Chem Phys ; 25(8): 6044-6049, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36281524

RESUMO

Spin-lattice relaxation rate (R1) measurements are commonly used to characterize protein dynamics. However, the time needed to collect the data can be quite long due to long relaxation times of the low-gamma nuclei, especially in the solid state. We present a method to collect backbone heavy atom relaxation data by nesting the collection of datasets in the solid state. This method results in a factor of 2 to 2.5 times faster data acquisition for backbone R1 relaxation data for the 13C and 15N sites of proteins.

6.
Phys Chem Chem Phys ; 24(36): 22333, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098353

RESUMO

Correction for 'Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N-1H through-bond heteronuclear correlation solid-state NMR spectroscopy' by Jacqueline Tognetti et al., Phys. Chem. Chem. Phys., 2022, 24, 20258-20273, https://doi.org/10.1039/D2CP01041K.

7.
Phys Chem Chem Phys ; 24(34): 20258-20273, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975627

RESUMO

The Lee-Goldburg condition for homonuclear decoupling in 1H magic-angle spinning (MAS) solid-state NMR sets the angle θ, corresponding to arctan of the ratio of the rf nutation frequency, ν1, to the rf offset, to be the magic angle, θm, equal to tan-1(√2) = 54.7°. At 60 kHz MAS, we report enhanced decoupling compared to MAS alone in a 1H spectrum of 15N-glycine with at θ = 30° for a ν1 of ∼100 kHz at a 1H Larmor frequency, ν0, of 500 MHz and 1 GHz, corresponding to a high chemical shift scaling factor (λCS) of 0.82. At 1 GHz, we also demonstrate enhanced decoupling compared to 60 kHz MAS alone for a lower ν1 of 51 kHz, i.e., a case where the nutation frequency is less than the MAS frequency, with θ = 18°, λCS = 0.92. The ratio of the rotor period to the decoupling cycle time, Ψ = τr/τc, is in the range 0.53 to 0.61. Windowed decoupling using the optimised parameters for a ν1 of ∼100 kHz also gives good performance in a 1H spin-echo experiment, enabling implementation in a 1H-detected 15N-1H cross polarisation (CP)-refocused INEPT heteronuclear correlation NMR experiment. Specifically, initial 15N transverse magnetisation as generated by 1H-15N CP is transferred back to 1H using a refocused INEPT pulse sequence employing windowed 1H decoupling. Such an approach ensures the observation of through-bond N-H connectivities. For 15N-glycine, while the CP-refocused INEPT experiment has a lower sensitivity (∼50%) as compared to a double CP experiment (with a 200 µs 15N to 1H CP contact time), there is selectivity for the directly bonded NH3+ moiety, while intensity is observed for the CH21H resonances in the double CP experiment. Two-dimensional 15N-1H correlation MAS NMR spectra are presented for the dipeptide ß-AspAla and the pharmaceutical cimetidine at 60 kHz MAS, both at natural isotopic abundance. For the dipeptide ß-AspAla, different build-up dependence on the first spin-echo duration is observed for the NH and NH3+ moieties demonstrating that the experiment could be used to distinguish resonances for different NHx groups.


Assuntos
Glicina , Imageamento por Ressonância Magnética , Dipeptídeos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
8.
NPJ Biofilms Microbiomes ; 8(1): 9, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217675

RESUMO

Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Biofilmes , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestinos
9.
Front Mol Biosci ; 8: 791026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957221

RESUMO

Order parameters are a useful tool for quantifying amplitudes of molecular motions. Here we measure dipolar order parameters by recoupling heteronuclear dipole-dipole couplings under fast spinning. We apply symmetry based recoupling methods to samples spinning under magic angle at 60 kHz by employing a variable flip angle compound inversion pulse. We validate the methods by measuring site-specific 15N-1H order parameters of a microcrystalline protein over a small temperature range and the same protein in a large, precipitated complex with antibody. The measurements of the order parameters in the complex are consistent with the observed protein undergoing overall motion within the assembly.

10.
J Magn Reson ; 331: 107049, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508920

RESUMO

Magic angle spinning (MAS) Solid-state NMR is a powerful technique to probe dynamics of biological systems at atomic resolution. R1 and R1ρ relaxation measurements can provide detailed insight on amplitudes and time scales of motions, especially when information from several different site-specific types of probes is combined. However, such experiments are time-consuming to perform. Shortening the time necessary to record relaxation data for different nuclei will greatly enhance practicality of such approaches. Here, we present staggered acquisition experiments to acquire multiple relaxation experiments from a single excitation to reduce the overall experimental time. Our strategy enables one to collect 15N and 13C relaxation data in a single experiment in a fraction of the time necessary for two separate experiments, with the same signal to noise ratio.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular
11.
J Magn Reson ; 320: 106831, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33022562

RESUMO

A procedure to acquire two Multiple-Quantum Magic Angle Spinning (MQMAS) NMR experiments with the same instrument time is presented. A triply tuned probe is utilized with multiple receivers to collect data with staggered acquisitions and thus more efficiently use the instrument time. The data for one nucleus is collected during the recovery delay of the other nucleus, and vice versa. The instrument time is reduced to 60-80% of the time needed for the single acquisition collection Specifically our approach is presented for recording triple-quantum (3Q) 17O and either 3Q or quintuple-quantum (5Q) 27Al MAS NMR spectra of a 1.18Na2O•5SiO2•Al2O3 glass gel.

12.
J Phys Chem B ; 124(24): 4975-4988, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32412761

RESUMO

The structure and molecular order in the thermotropic ionic liquid crystal (ILC), [choline][geranate(H)octanoate], an analogue of Choline And GEranate (CAGE), which has potential for use as a broad-spectrum antimicrobial and transdermal and oral delivery agent, were investigated by magic-angle spinning (MAS) nuclear magnetic resonance (NMR), polarizing optical microscopy, small-angle X-ray scattering (SAXS), and mass spectrometry. Mass spectrometry and the 1H NMR chemical shift reveal that CAGE-oct is a dynamic system, with metathesis (the exchange of interacting ions) and hydrogen exchange occurring between hydrogen-bonded/ionic complexes such as [(choline)(geranate)(H)(octanoate)], [(choline)(octanoate)2(H)], and [(choline)(geranate)2(H)]. These clusters, which are shown by mass spectrometry to be significantly more stable than expected for typical electrostatic ion clusters, involve hydrogen bonding between the carboxylic acid, carboxylate, and hydroxyl groups, with rapid hydrogen bond breaking and re-formation observed to average the 1H chemical shifts. The formation of a partial bilayer liquid crystal (LC) phase was identified by SAXS and polarizing optical microscopy at temperatures below ∼293 K. The occurrence of this transition close to room temperature could be utilized as a potential temperature-induced "switch" of the anisotropic properties for particular applications. The presence of an isotropic component of approximately 23% was observed to coexist with the LC phase, as detected by polarizing optical microscopy and quantified by both 1H-13C dipolar-chemical shift correlation (DIPSHIFT) and 1H double-quantum (DQ) MAS NMR experiments. At temperatures above the LC-to-isotropic transition, intermediate-range order (clustering of polar and nonpolar domains), a feature of many ILs, persists. Site-specific order parameters for the LC phase of CAGE-oct were obtained from the MAS NMR measurement of the partially averaged 13C-1H dipolar couplings (DCH) by cross-polarization (CP) build-up curves and DIPSHIFT experiments, and 1H-1H dipolar couplings (DHH) by double-quantum (DQ) build-up curves. The corresponding order parameters, SCH and SHH, are in the range 0-0.2 and are lower compared to those for smectic (i.e., layered) phases of conventional nonionic liquid crystals, resembling those of lamellar phases formed by lyotropic surfactant-solvent systems.

13.
Magn Reson Chem ; 58(5): 445-465, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31691361

RESUMO

Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Estrutura Terciária de Proteína
14.
Nat Commun ; 10(1): 4978, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673042

RESUMO

Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use 13C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy.

15.
J Magn Reson ; 305: 219-231, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31319283

RESUMO

We present a suite of two-receiver solid-state NMR experiments for backbone and side chain resonance assignment. The experiments rely on either dipolar coupling or scalar coupling for polarization transfer and are devised to acquire a 1H-detected 3D experiment AND a nested 13C-detected 2D from a shared excitation pulse. In order to compensate for the lower sensitivity of detection on 13C nucleus, 2D rows are signal averaged during 3D planes. The 3D dual receiver experiments do not suffer from any appreciable signal loss compared to their single receiver versions and require no extra optimization. The resulting data is higher in information content with no additional experiment time. The approach is expected to become widespread as multiple receivers become standard for new NMR spectrometers.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isótopos de Carbono , Imageamento Tridimensional , Conformação Proteica
16.
Nat Commun ; 8(1): 2073, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233991

RESUMO

ß-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H-1H and 13C-13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of ß-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Bicamadas Lipídicas/química , Porinas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína
17.
Phys Chem Chem Phys ; 19(38): 25949-25960, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28944393

RESUMO

This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.

18.
Phys Chem Chem Phys ; 18(44): 30696-30704, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27791210

RESUMO

Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved spectral resolution at 180-200 K compared to 110 K, we investigate the effects of AMUPol and various deuterated TOTAPOL isotopologues on sensitivity and spectral resolution at these temperatures, using proline and reproducibly prepared SH3 domain samples. The TOTAPOL deuteration pattern is optimized for protein DNP MAS NMR, and signal-to-noise per unit time measurements demonstrate the high value of TOTAPOL isotopologues for Protein DNP MAS NMR at 180-200 K. The combined effects of enhancement, depolarization, and proton longitudinal relaxation are surprisingly sample-specific. At 200 K, DNP on SH3 domain standard samples yields a 15-fold increase in signal-to-noise over a sample without radicals. 2D and 3D NCACX/NCOCX spectra were recorded at 200 K within 1 and 13 hours, respectively. Decreasing enhancements with increasing 2H-content at the CH2 sites of the TEMPO rings in CD3-TOTAPOL highlight the importance of protons in a sphere of 4-6 Å around the nitroxyl group, presumably for polarization pickup from electron spins.

19.
Sci Adv ; 2(8): e1600379, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551685

RESUMO

Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure.


Assuntos
Imageamento por Ressonância Magnética/métodos , Sinais Direcionadores de Proteínas , Ribossomos/química , Sequência de Aminoácidos , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes , Ribossomos/genética
20.
J Phys Chem B ; 120(2): 329-39, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26709853

RESUMO

Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.


Assuntos
HIV-1/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Virais/química , Capsídeo/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...