Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 23(7): 2592-605, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742992

RESUMO

It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Celulose/ultraestrutura , Hipocótilo/citologia , Hipocótilo/crescimento & desenvolvimento , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Anisotropia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Celulose/metabolismo , Glucosiltransferases/metabolismo , Hipocótilo/metabolismo , Microfibrilas/química , Microfibrilas/metabolismo , Microfibrilas/ultraestrutura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Epiderme Vegetal/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Planta ; 230(6): 1129-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756725

RESUMO

The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant's final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March-April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.


Assuntos
Proliferação de Células , Celulose/metabolismo , Microtúbulos/metabolismo , Nicotiana/metabolismo , Voo Espacial , Linhagem Celular , Forma Celular , Celulose/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microtúbulos/ultraestrutura , Nicotiana/citologia , Nicotiana/ultraestrutura , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...