Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Biol ; 30(15): 2962-2973.e5, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32589913

RESUMO

Disrupting binocular vision during a developmental critical period can yield enduring changes to ocular dominance (OD) in primary visual cortex (V1). Here we investigated how this experience-dependent plasticity is coordinated within the laminar circuitry of V1 by deleting separately in each cortical layer (L) a gene required to close the critical period, nogo-66 receptor (ngr1). Deleting ngr1 in excitatory neurons in L4, but not in L2/3, L5, or L6, prevented closure of the critical period, and adult mice remained sensitive to brief monocular deprivation. Intracortical disinhibition, but not thalamocortical disinhibition, accompanied this OD plasticity. Both juvenile wild-type mice and adult mice lacking ngr1 in L4 displayed OD plasticity that advanced more rapidly L4 than L2/3 or L5. Interestingly, blocking OD plasticity in L2/3 with the drug AM-251 did not impair OD plasticity in L5. We propose that L4 restricts disinhibition and gates OD plasticity independent of a canonical cortical microcircuit.


Assuntos
Plasticidade Neuronal/fisiologia , Receptor Nogo 1/genética , Receptor Nogo 1/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Visual/fisiologia , Animais , Dominância Ocular , Deleção de Genes , Camundongos , Visão Binocular/fisiologia
3.
Curr Biol ; 28(12): 1914-1923.e5, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29887305

RESUMO

Degrading vision by one eye during a developmental critical period yields enduring deficits in both eye dominance and visual acuity. A predominant model is that "reactivating" ocular dominance (OD) plasticity after the critical period is required to improve acuity in amblyopic adults. However, here we demonstrate that plasticity of eye dominance and acuity are independent and restricted by the nogo-66 receptor (ngr1) in distinct neuronal populations. Ngr1 mutant mice display greater excitatory synaptic input onto both inhibitory and excitatory neurons with restoration of normal vision. Deleting ngr1 in excitatory cortical neurons permits recovery of eye dominance but not acuity. Reciprocally, deleting ngr1 in thalamus is insufficient to rectify eye dominance but yields improvement of acuity to normal. Abolishing ngr1 expression in adult mice also promotes recovery of acuity. Together, these findings challenge the notion that mechanisms for OD plasticity contribute to the alterations in circuitry that restore acuity in amblyopia.


Assuntos
Ambliopia/fisiopatologia , Dominância Ocular/fisiologia , Neurônios/metabolismo , Acuidade Visual/fisiologia , Ambliopia/genética , Animais , Dominância Ocular/genética , Feminino , Masculino , Camundongos , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Acuidade Visual/genética
4.
Neuroscientist ; 22(6): 653-666, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26552866

RESUMO

During the developmental critical period for visual plasticity, discordant vision alters the responsiveness of neurons in visual cortex. The subsequent closure of the critical period not only consolidates neural function but also limits recovery of acuity from preceding abnormal visual experience. Despite species-specific differences in circuitry of the visual system, these characteristics are conserved. The nogo-66 receptor 1 (ngr1) is one of only a small number of genes identified thus far that is essential to closing the critical period. Mice lacking a functional ngr1 gene retain developmental visual plasticity as adults and their visual acuity spontaneously improves after prolonged visual deprivation. Experiments employing conditional mouse genetics have revealed that ngr1 restricts plasticity within distinct circuits for ocular dominance and visual acuity. However, the mechanisms by which NgR1 limits plasticity have not been elucidated, in part because the subcellular localization and signal transduction of the protein are only partially understood. Here we explore potential mechanisms for NgR1 function in relation to manipulations that reactivate visual plasticity in adults and propose lines of investigation to address relevant gaps in knowledge.


Assuntos
Plasticidade Neuronal/fisiologia , Receptor Nogo 1/metabolismo , Acuidade Visual/fisiologia , Córtex Visual/fisiologia , Animais , Dominância Ocular/fisiologia , Humanos , Neurônios/metabolismo
5.
Cereb Cortex ; 26(5): 1975-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25662716

RESUMO

The formation and stability of dendritic spines on excitatory cortical neurons are correlated with adult visual plasticity, yet how the formation, loss, and stability of postsynaptic spines register with that of presynaptic axonal varicosities is unknown. Monocular deprivation has been demonstrated to increase the rate of formation of dendritic spines in visual cortex. However, we find that monocular deprivation does not alter the dynamics of intracortical axonal boutons in visual cortex of either adult wild-type (WT) mice or adult NgR1 mutant (ngr1-/-) mice that retain critical period visual plasticity. Restoring normal vision for a week following long-term monocular deprivation (LTMD), a model of amblyopia, partially restores ocular dominance (OD) in WT and ngr1-/- mice but does not alter the formation or stability of axonal boutons. Both WT and ngr1-/- mice displayed a rapid return of normal OD within 8 days after LTMD as measured with optical imaging of intrinsic signals. In contrast, single-unit recordings revealed that ngr1-/- exhibited greater recovery of OD by 8 days post-LTMD. Our findings support a model of structural plasticity in which changes in synaptic connectivity are largely postsynaptic. In contrast, axonal boutons appear to be stable during changes in cortical circuit function.


Assuntos
Ambliopia/fisiopatologia , Dominância Ocular , Plasticidade Neuronal , Receptor Nogo 1/fisiologia , Terminações Pré-Sinápticas/fisiologia , Córtex Visual/fisiopatologia , Ambliopia/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptor Nogo 1/genética , Privação Sensorial , Acuidade Visual/fisiologia , Córtex Visual/citologia
6.
PLoS One ; 9(11): e112678, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386856

RESUMO

The genes that govern how experience refines neural circuitry and alters synaptic structural plasticity are poorly understood. The nogo-66 receptor 1 gene (ngr1) is one candidate that may restrict the rate of learning as well as basal anatomical plasticity in adult cerebral cortex. To investigate if ngr1 limits the rate of learning we tested adult ngr1 null mice on a tactile learning task. Ngr1 mutants display greater overall performance despite a normal rate of improvement on the gap-cross assay, a whisker-dependent learning paradigm. To determine if ngr1 restricts basal anatomical plasticity in the associated sensory cortex, we repeatedly imaged dendritic spines and axonal varicosities of both constitutive and conditional adult ngr1 mutant mice in somatosensory barrel cortex for two weeks through cranial windows with two-photon chronic in vivo imaging. Neither constant nor acute deletion of ngr1 affected turnover or stability of dendritic spines or axonal boutons. The improved performance on the gap-cross task is not attributable to greater motor coordination, as ngr1 mutant mice possess a mild deficit in overall performance and a normal learning rate on the rotarod, a motor task. Mice lacking ngr1 also exhibit normal induction of tone-associated fear conditioning yet accelerated fear extinction and impaired consolidation. Thus, ngr1 alters tactile and motor task performance but does not appear to limit the rate of tactile or motor learning, nor determine the low set point for synaptic turnover in sensory cortex.


Assuntos
Proteínas da Mielina/genética , Plasticidade Neuronal/genética , Receptores de Superfície Celular/genética , Análise e Desempenho de Tarefas , Animais , Axônios/fisiologia , Espinhas Dendríticas/fisiologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Proteínas da Mielina/metabolismo , Receptor Nogo 1 , Receptores de Superfície Celular/metabolismo , Teste de Desempenho do Rota-Rod , Córtex Somatossensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...