Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(5-1): 054224, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115531

RESUMO

We consider a dimer lattice of the Fermi-Pasta-Ulam-Tsingou (FPUT) type, where alternating linear couplings have a controllably small difference and the cubic nonlinearity (ß-FPUT) is the same for all interaction pairs. We use a weakly nonlinear formal reduction within the lattice band gap to obtain a continuum, nonlinear Dirac-type system. We derive the Dirac soliton profiles and the model's conservation laws analytically. We then examine the cases of the semi-infinite and the finite domains and illustrate how the soliton solutions of the bulk problem can be glued to the boundaries for different types of boundary conditions. We thus explain the existence of various kinds of nonlinear edge states in the system, of which only one leads to the standard topological edge states observed in the linear limit. We finally examine the stability of bulk and edge states and verify them through direct numerical simulations, in which we observe a solitonlike wave setting into motion due to the instability.

2.
Nat Commun ; 9(1): 1467, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654228

RESUMO

Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

3.
Opt Lett ; 36(6): 793-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21403685

RESUMO

Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schrödinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...