Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984223

RESUMO

Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength around 1550 nm. Here, we present silicon LEDs based on the electroluminescence of Er:O complexes in Si. Such sources are fabricated with a fully-compatible CMOS process on a 220 nm-thick silicon-on-insulator (SOI) wafer, the common standard in silicon photonics. The implantation depth is tuned to match the center of the silicon layer. The erbium and oxygen co-doping ratio is tuned to optimize the electroluminescence signal. We fabricate a batch of Er:O diodes with surface areas ranging from 1 µm × 1 µm to 50 µm × 50 µm emitting 1550 nm photons at room temperature. We demonstrate emission rates around 5 × 106 photons/s for a 1 µm × 1 µm device at room temperature using superconducting nanowire detectors cooled at 0.8 K. The demonstration of Er:O diodes integrated in the 220 nm SOI platform paves the way towards the creation of integrated silicon photon sources suitable for arbitrary-statistic-tolerant QKD protocols.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957021

RESUMO

Energy storage devices based on earth-abundant materials are key steps towards portable and sustainable technologies used in daily life. Pseudocapacitive devices, combining high power and high energy density features, are widely required, and transition metal oxides represent promising building materials owing to their excellent stability, abundance, and ease of synthesis. Here, we report an original ZnO-based nanostructure, named nanostars (NSs), obtained at high yields by chemical bath deposition (CBD) and applied as pseudocapacitors. The ZnO NSs appeared as bundles of crystalline ZnO nanostrips (30 nm thin and up to 12 µm long) with a six-point star shape, self-assembled onto a plane. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL) were used to confirm the crystal structure, shape, and defect-mediated radiation. The ZnO NSs, dispersed onto graphene paper, were tested for energy storage by cyclic voltammetry (CV) and galvanostatic charge−discharge (GCD) analyses, showing a clear pseudocapacitor behavior. The energy storage mechanism was analyzed and related to oxygen vacancy defects at the surface. A proper evaluation of the charge stored on the ZnO NSs and the substrate allowed us to investigate the storage efficiency, measuring a maximum specific capacitance of 94 F g−1 due to ZnO nanostars alone, with a marked diffusion-limited behavior. The obtained results demonstrate the promising efficacy of ZnO-based NSs as sustainable materials for pseudocapacitors.

3.
J Phys Chem Lett ; 13(30): 6935-6943, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876058

RESUMO

According to their high electron density and ultrasmall size, gold nanoclusters (AuNCs) have unique luminescence and photoelectrochemical properties that make them very attractive for various biomedical fields. These applications require a clear understanding of their interaction with biological membranes. Here we demonstrate the ability of the AuNCs as markers for lipidic bilayer structures such as synthetic liposomes and biological extracellular vesicles (EVs). The AuNCs can selectively interact with liposomes or EVs through an attractive electrostatic interaction as demonstrated by zetametry and fluorescence microscopy. According to the ratio of nanoclusters to vesicles, the lipidic membranes can be fluorescently labeled without altering their thickness until charge reversion, the AuNCs being located at the level of the phosphate headgroups. In presence of an excess of AuNCs, the vesicles tend to adhere and aggregate. The strong adsorption of AuNCs results in the formation of a lamellar phase as demonstrated by cryo-transmission electron microscopy and small-angle X-ray scattering techniques.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Bicamadas Lipídicas , Lipossomos , Luminescência , Nanopartículas Metálicas/química
4.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685157

RESUMO

Surface decoration by means of metal nanostructures is an effective way to locally modify the electronic properties of materials. The decoration of ZnO nanorods by means of Au nanoparticles was experimentally investigated and modelled in terms of energy band bending. ZnO nanorods were synthesized by chemical bath deposition. Decoration with Au nanoparticles was achieved by immersion in a colloidal solution obtained through the modified Turkevich method. The surface of ZnO nanorods was quantitatively investigated by Scanning Electron Microscopy, Transmission Electron Microscopy and Rutherford Backscattering Spectrometry. The Photoluminescence and Cathodoluminescence of bare and decorated ZnO nanorods were investigated, as well as the band bending through Mott-Schottky electrochemical analyses. Decoration with Au nanoparticles induced a 10 times reduction in free electrons below the surface of ZnO, together with a decrease in UV luminescence and an increase in visible-UV intensity ratio. The effect of decoration was modelled with a nano-Schottky junction at ZnO surface below the Au nanoparticle with a Multiphysics approach. An extensive electric field with a specific halo effect formed beneath the metal-semiconductor interface. ZnO nanorod decoration with Au nanoparticles was shown to be a versatile method to tailor the electronic properties at the semiconductor surface.

5.
Nanoscale ; 12(30): 16162-16172, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32700701

RESUMO

Zinc oxide (ZnO) nanostructures were synthesized in the form of nanoparticles, nanoflowers and nanourchins. Structural, electronic and optical characterization of the samples was performed via standard techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence, Raman and ultraviolet-visible (UV-Vis) spectroscopy. Point defect structures which are specific to each morphology have been investigated in terms of their concentration and location via state-of-the-art electron paramagnetic resonance (EPR) spectroscopy. According to the core-shell model, all the samples revealed core defects; however, the defects on the surface are smeared out. Finally, all three morphologies have been tested as electrode materials in a real supercapacitor device and the performance of the device, in particular, the specific capacitance and the storage mechanism, has been mediated by the point defects. Morphology-dependent defective ZnO electrodes enable the monitoring of the working principle of the supercapacitor device ranging from electric double-layer capacitors (EDLC) to pseudo-supercapacitors.

6.
ACS Appl Mater Interfaces ; 9(1): 573-584, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28001361

RESUMO

The production of high-quality semiconducting nanostructures with optimized electrical, optical, and electromechanical properties is important for the advancement of next-generation technologies. In this context, we herein report on highly obliquely aligned single-crystalline zinc oxide nanosheets (ZnO NSs) grown via the vapor-liquid-solid approach using r-plane (01-12) sapphire as the template surface. The high structural and optical quality of as-grown ZnO NSs has been confirmed using high-resolution transmission electron microscopy and temperature-dependent photoluminescence, respectively. To assess the potential of our NSs as effective building materials in high-performance flexible electronics, we fabricate organic (parylene C)/inorganic (ZnO NS) hybrid field-effect transistor (FET) devices on flexible substrates using room-temperature assembly processes. Extraction of key FET performance parameters suggests that as-grown ZnO NSs can successfully function as excellent n-type semiconducting modules. Such devices are found to consistently show very high on-state currents (Ion) > 40 µA, high field-effect mobility (µeff) > 200 cm2/(V s), exceptionally high on/off current modulation ratio (Ion/off) of around 109, steep subthreshold swing (s-s) < 200 mV/decade, very low hysteresis, and negligible threshold voltage shifts with prolonged electrical stressing (up to 340 min). The present study delivers a concept of integrating high-quality ZnO NS as active semiconducting elements in flexible electronic circuits.

7.
Sci Rep ; 5: 16753, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592198

RESUMO

The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

8.
ACS Appl Mater Interfaces ; 7(33): 18201-5, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26258654

RESUMO

A very bright room-temperature cathodoluminescence (CL) signal, tunable in the visible range by changing the Eu(2+) concentration, has been observed in Eu-doped SiOC films. Depth-resolved CL measurements demonstrate that a bilayer consisting of two SiOC films containing different Eu concentrations allows the continuous tuning of the Eu(2+) emission from blue to green by changing the energy of the exciting electrons. Furthermore, the proper control at the nanoscale of the electron penetration depth allows to obtain a high-quality white light emission. The compatibility of SiOC films with Si technology opens the way to promising applications of Eu-based materials in lighting and display technologies.

9.
Nanoscale Res Lett ; 9(1): 74, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521284

RESUMO

Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 µm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS: 61.46.Km; 78.55.-m; 78.67.Lt.

10.
Opt Express ; 21(17): 20280-90, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105574

RESUMO

The intense luminescence of SiOC layers is studied and its dependence on the parameters of the thermal annealing process elucidated. Although the emission of SiOC is bright enough to be interesting for practical applications, this material is even more promising as a host matrix for optically active Eu ions. Indeed, when incorporated in a SiOC matrix, Eu(3+) ions are efficiently reduced to Eu(2+), producing a very strong visible luminescence peaked at 440 nm. Eu(2+) ions benefit also of the occurrence of an energy transfer mechanism involving the matrix, which increases the efficiency of photon absorption for exciting wavelengths shorter than 300 nm. We evaluate that Eu doping of SiOC produces an enhancement of the luminescence intensity at 440 nm accounting for about a factor of 15. These properties open the way to new promising perspectives for the application of Eu-doped materials in photonic and lighting technologies.

11.
Opt Express ; 20(5): 5501-7, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418355

RESUMO

A stable Eu3+ → Eu2+ reduction is accomplished by thermal annealing in N2 ambient of Eu2O3 films deposited by magnetron sputtering on Si substrates. Transmission electron microscopy and x-ray diffraction measurements demonstrate the occurrence of a complex reactivity at the Eu2O3/Si interface, leading to the formation of Eu2+ silicates, characterized by a very strong (the measured external quantum efficiency is about 10%) and broad room temperature photoluminescence (PL) peak centered at 590 nm. This signal is much more efficient than the Eu3+ emission, mainly consisting of a sharp PL peak at 622 nm, observed in O2-annealed films, where the presence of a SiO2 layer at the Eu2O3/Si interface prevents Eu2+ formation.


Assuntos
Európio/química , Membranas Artificiais , Silício/química , Adsorção , Luz , Teste de Materiais , Óxidos/química , Refratometria , Espalhamento de Radiação
12.
Opt Express ; 20(2): 1483-90, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274492

RESUMO

In this paper we describe the luminescence properties of Si nanowires (NWs) prepared by a maskless synthesis technique, based on the Au-catalyzed wet etching of Si substrates by an aqueous solution of H(2)O(2) and HF. A strong room temperature photoluminescence (PL), centered at about 690 nm, is observed when Si NWs are optically excited. The detailed analysis of the steady-state and time-resolved PL properties of the system as a function of aging, temperature and pump power allows to demonstrate that the emission is due to the radiative recombination of quantum confined excitons. These results open the route towards novel applications of Si NWs in photonics as efficient light sources.


Assuntos
Nanotecnologia/métodos , Nanofios , Dispositivos Ópticos , Silício/química , Temperatura , Análise de Falha de Equipamento , Modelos Teóricos , Fótons , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...