Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
EMBO J ; 42(20): e110844, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661798

RESUMO

Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.


Assuntos
Neoplasias , Rad51 Recombinase , Animais , Camundongos , Envelhecimento/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
2.
Nat Commun ; 12(1): 5887, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620853

RESUMO

TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Encéfalo/patologia , Epêndima/patologia , Adesões Focais/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Interferência de RNA , Transcriptoma
3.
Int J Gynecol Pathol ; 39(4): 384-390, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32515923

RESUMO

Interpretation of histopathology of cervical premalignant lesions suffers from marked interobserver variability due to its subjective nature. We aimed to evaluate the usefulness of the biomarkers p16 and Ki-67 in improving the diagnostic accuracy of cervical histopathology and assess the correlation between p16 expression and human papillomavirus test in different grades of cervical intraepithelial neoplasia (CIN). Cervical tissue specimens with a diagnosis of CIN 1 or worse (CIN 1+) on hematoxylin and eosin staining were selected for immunohistochemistry (IHC) staining for p16 and Ki-67. The IHC slides were examined by a gynecologic pathologist along with a review of hematoxylin and eosin slides. The review histopathology diagnosis was used to correlate with the IHC results. We observed that the proportion of women with overexpression of p16 increased with increasing histologic severity: 0% in women with normal histology; 33.3% in women with CIN 1; 58.1% in women with CIN 2; and 73.8% in women with CIN 3. Among the human papillomavirus-positive women, 76.3% (58/76) women with CIN 2/CIN 3 expressed p16, and only 8.9% (4/45) women with normal histopathology or CIN 1 expressed the same. A combination of p16 positivity and abnormal expression of Ki-67 beyond the lower third of the epithelium was observed in 0% of normal/CIN 1 and 60.5% (40/66) of CIN 3 detected on routine histopathology. We concluded that dual staining could be used as an adjunctive test to improve the diagnostic accuracy of histopathology. In addition, p16/Ki-67 IHC has a role in guiding management decisions in cases with discordant colposcopy and histopathology diagnoses.


Assuntos
Biomarcadores Tumorais/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Antígeno Ki-67/metabolismo , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Colposcopia , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Variações Dependentes do Observador , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/patologia
4.
Int J Cancer ; 147(9): 2564-2577, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525563

RESUMO

Merlin is a versatile tumor suppressor protein encoded by the NF2 gene. Several lines of evidence suggest that Merlin exerts its tumor suppressor activity, at least in part, by forming an inhibitory complex with cluster of differentiation 44 (CD44). Consistently, numerous NF2 mutations in cancer patients are predicted to perturb the interaction of Merlin with CD44. We hypothesized that disruption of the Merlin-CD44 complex through loss of Merlin, unleashes putative tumor- or metastasis-promoting functions of CD44. To evaluate the relevance of the Merlin-CD44 interaction in vivo, we compared tumor growth and progression in Cd44-positive and Cd44-negative Nf2-mutant mice. Heterozygous Nf2-mutant mice were prone to developing highly metastatic osteosarcomas. Importantly, while the absence of the Cd44 gene had no effect on the frequency of primary osteosarcoma development, it strongly diminished osteosarcoma metastasis formation in the Nf2-mutant mice. In vitro assays identified transendothelial migration as the most prominent cellular phenotype dependent on CD44. Adhesion to endothelial cells was blocked by interfering with integrin α4ß1 (very late antigen-4, VLA-4) on osteosarcoma cells and CD44 upregulated levels of integrin VLA-4 ß1 subunit. Among other putative functions of CD44, which may contribute to the metastatic behavior, the passage through the endothelial cells also appears to be critical in vivo, as CD44 significantly promoted formation of lung metastasis upon intravenous injection of osteosarcoma cells into immunocompromised mice. Altogether, our results strongly suggest that CD44 plays a metastasis-promoting role in the absence of Merlin.


Assuntos
Neoplasias Ósseas/genética , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/genética , Neurofibromina 2/genética , Osteossarcoma/genética , Animais , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Adesão Celular/genética , Linhagem Celular Tumoral/transplante , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Humanos , Receptores de Hialuronatos/genética , Pulmão/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Knockout , Osteossarcoma/secundário
5.
Mol Carcinog ; 58(5): 621-626, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582228

RESUMO

Loss-of-function of RHAMM causes hypofertility and testicular atrophy in young mice, followed by germ cell neoplasia in situ (GCNIS) of the testis, cellular atypia, and development of the testicular germ cell tumor (TGCT) seminoma. These pathologies reflect the risk factors and phenotypes that precede seminoma development in humans and-given the high prevalence of RHAMM downregulation in human seminoma-link RHAMM dysfunction with the aetiology of male hypofertility and GCNIS-related TGCTs. The initiating event underlying these pathologies, in RHAMM mutant testis, is premature displacement of undifferentiated progenitors from the basal compartment. We hypothesized that cd44 (both cancer initiating cell- and oncogenic progression marker) will drive GCNIS development, induced by RHAMM-loss-of-function in the mouse. We report that cd44 is expressed in a specific subset of GCNIS testes. Its genetic deletion has no effect on GCNIS onset, but it ameliorates oncogenic progression. We conclude that cd44 expression, combined with RHAMM dysfunction, promotes oncogenic progression in the testis.


Assuntos
Carcinoma in Situ/prevenção & controle , Proteínas da Matriz Extracelular/fisiologia , Receptores de Hialuronatos/fisiologia , Infertilidade Masculina/prevenção & controle , Neoplasias Embrionárias de Células Germinativas/prevenção & controle , Lesões Pré-Cancerosas/prevenção & controle , Neoplasias Testiculares/prevenção & controle , Animais , Biomarcadores Tumorais/genética , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Feminino , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Deleção de Sequência , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
6.
Ann Rheum Dis ; 77(11): 1610-1618, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997111

RESUMO

BACKGROUND: Glucocorticoid (GC) therapy is frequently used to treat rheumatoid arthritis due to potent anti-inflammatory actions of GCs. Direct actions of GCs on immune cells were suggested to suppress inflammation. OBJECTIVES: Define the role of the glucocorticoid receptor (GR) in stromal cells for suppression of inflammatory arthritis. METHODS: Bone marrow chimeric mice lacking the GR in the hematopoietic or stromal compartment, respectively, and mice with impaired GR dimerisation (GRdim) were analysed for their response to dexamethasone (DEX, 1 mg/kg) treatment in serum transfer-induced arthritis (STIA). Joint swelling, cell infiltration (histology), cytokines, cell composition (flow cytometry) and gene expression were analysed and RNASeq of wild type and GRdim primary murine fibroblast-like synoviocytes (FLS) was performed. RESULTS: GR deficiency in immune cells did not impair GC-mediated suppression of STIA. In contrast, mice with GR-deficient or GR dimerisation-impaired stromal cells were resistant to GC treatment, despite efficient suppression of cytokines. Intriguingly, in mice with impaired GR function in the stromal compartment, GCs failed to stimulate non-classical, non-activated macrophages (Ly6Cneg, MHCIIneg) and associated anti-inflammatory markers CD163, CD36, AnxA1, MerTK and Axl. Mice with GR deficiency in FLS were partially resistant to GC-induced suppression of STIA. Accordingly, RNASeq analysis of DEX-treated GRdim FLS revealed a distinct gene signature indicating enhanced activity and a failure to reduce macrophage inflammatory protein (Mip)-1α and Mip-1ß. CONCLUSION: We report a novel anti-inflammatory mechanism of GC action that involves GR dimerisation-dependent gene regulation in non-immune stromal cells, presumably FLS. FLS control non-classical, anti-inflammatory polarisation of macrophages that contributes to suppression of inflammation in arthritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Receptores de Glucocorticoides/fisiologia , Células Estromais/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Citocinas/biossíntese , Dexametasona/farmacologia , Dimerização , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/metabolismo , Células Estromais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Quimeras de Transplante
7.
Elife ; 62017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994651

RESUMO

Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Neurais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Animais , Encéfalo/embriologia , Dineínas/metabolismo , Camundongos Knockout , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Quinase 1 Polo-Like
8.
Stem Cell Reports ; 9(4): 1071-1080, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28943256

RESUMO

Misoriented division of neuroprogenitors, by loss-of-function studies of centrosome or spindle components, has been linked to the developmental brain defects microcephaly and lissencephaly. As these approaches also affect centrosome biogenesis, spindle assembly, or cell-cycle progression, the resulting pathologies cannot be attributed solely to spindle misorientation. To address this issue, we employed a truncation of the spindle-orienting protein RHAMM. This truncation of the RHAMM centrosome-targeting domain does not have an impact on centrosome biogenesis or on spindle assembly in vivo. The RHAMM mutants exhibit misorientation of the division plane of neuroprogenitors, without affecting the division rate of these cells, resulting against expectation in megalencephaly associated with cerebral cortex thickening, cerebellum enlargement, and premature cerebellum differentiation. We conclude that RHAMM associates with the spindle of neuroprogenitor cells via its centrosome-targeting domain, where it regulates differentiation in the developing brain by orienting the spindle.


Assuntos
Cerebelo/citologia , Córtex Cerebral/citologia , Megalencefalia/etiologia , Megalencefalia/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fuso Acromático/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Neurogênese , Organogênese , Transporte Proteico
9.
Cancer Res ; 76(21): 6382-6395, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543603

RESUMO

Hypofertility is a risk factor for the development of testicular germ cell tumors (TGCT), but the initiating event linking these pathologies is unknown. We hypothesized that excessive planar division of undifferentiated germ cells promotes their self-renewal and TGCT development. However, our results obtained from mouse models and seminoma patients demonstrated the opposite. Defective planar divisions of undifferentiated germ cells caused their premature exit from the seminiferous tubule niche, resulting in germ cell depletion, hypofertility, intratubular germ cell neoplasias, and seminoma development. Oriented divisions of germ cells, which determine their fate, were regulated by spindle-associated RHAMM-a function we found to be abolished in 96% of human seminomas. Mechanistically, RHAMM expression is regulated by the testis-specific polyadenylation protein CFIm25, which is downregulated in the human seminomas. These results suggested that spindle misorientation is oncogenic, not by promoting self-renewing germ cell divisions within the niche, but by prematurely displacing proliferating cells from their normal epithelial milieu. Furthermore, they suggested RHAMM loss-of-function and spindle misorientation as an initiating event underlying both hypofertility and TGCT initiation. These findings identify spindle-associated RHAMM as an intrinsic regulator of male germ cell fate and as a gatekeeper preventing initiation of TGCTs. Cancer Res; 76(21); 6382-95. ©2016 AACR.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Fertilidade , Receptores de Hialuronatos/fisiologia , Neoplasias Embrionárias de Células Germinativas/etiologia , Seminoma/etiologia , Fuso Acromático/química , Neoplasias Testiculares/etiologia , Testículo/citologia , Animais , Apoptose , Divisão Celular , Proteínas da Matriz Extracelular/análise , Células HeLa , Humanos , Receptores de Hialuronatos/análise , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/patologia , Seminoma/patologia , Neoplasias Testiculares/patologia , Proteína Supressora de Tumor p53/fisiologia
10.
Oncotarget ; 7(17): 23006-18, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27050272

RESUMO

Nijmegen Breakage Syndrome is a disease caused by NBN mutations. Here, we report a novel function of Nbn in skin homeostasis. We found that Nbn deficiency in hair follicle (HF) progenitors promoted increased DNA damage signaling, stimulating p16Ink4a up-regulation, Trp53 stabilization and cytokines secretion leading to HF-growth arrest and hair loss. At later stages, the basal keratinocytes layer exhibited also enhanced DNA damage response but in contrast to the one in HF progenitor was not associated with pro-inflammatory cytokines expression, but rather increased proliferation, lack of differentiation and immune response resembling psoriasiform dermatitis. Simultaneous Nbn and Trp53 inactivation significantly exacerbated this phenotype, due to the lack of inhibition of pro-inflammatory cytokines secretion by Trp53. Altogether, we demonstrated novel functions of Nbn in HF maintenance and prevention of skin inflammation and we provide a mechanistic explanation that links cell intrinsic DNA maintenance with large scale morphological tissue alterations.


Assuntos
Alopecia/etiologia , Proteínas de Ciclo Celular/fisiologia , Dermatite/patologia , Epiderme/patologia , Proteínas Nucleares/fisiologia , Psoríase/patologia , Proteína Supressora de Tumor p53/fisiologia , Alopecia/patologia , Animais , Proteínas de Ligação a DNA , Dermatite/metabolismo , Epiderme/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Psoríase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA