Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 18(1): 47, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923995

RESUMO

BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.


Assuntos
Nanofibras , Nanotubos de Carbono , Fibrose Pulmonar , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente
2.
Part Fibre Toxicol ; 18(1): 34, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496918

RESUMO

BACKGROUND: Multiwalled carbon nanotubes (MWCNT) are an increasingly utilized engineered nanomaterial that pose the potential for significant risk of exposure-related health outcomes. The mechanism(s) underlying MWCNT-induced toxicity to extrapulmonary sites are still being defined. MWCNT-induced serum-borne bioactivity appears to dysregulate systemic endothelial cell function. The serum compositional changes after MWCNT exposure have been identified as a surge of fragmented endogenous peptides, likely derived from matrix metalloproteinase (MMP) activity. In the present study, we utilize a broad-spectrum MMP inhibitor, Marimastat, along with a previously described oropharyngeal aspiration model of MWCNT administration to investigate the role of MMPs in MWCNT-derived serum peptide generation and endothelial bioactivity. RESULTS: C57BL/6 mice were treated with Marimastat or vehicle by oropharyngeal aspiration 1 h prior to MWCNT treatment. Pulmonary neutrophil infiltration and total bronchoalveolar lavage fluid protein increased independent of MMP blockade. The lung cytokine profile similarly increased following MWCNT exposure for major inflammatory markers (IL-1ß, IL-6, and TNF-α), with minimal impact from MMP inhibition. However, serum peptidomic analysis revealed differential peptide compositional profiles, with MMP blockade abrogating MWCNT-derived serum peptide fragments. The serum, in turn, exhibited differential potency in terms of inflammatory bioactivity when incubated with primary murine cerebrovascular endothelial cells. Serum from MWCNT-treated mice led to inflammatory responses in endothelial cells that were significantly blunted with serum from Marimastat-treated mice. CONCLUSIONS: Thus, MWCNT exposure induced pulmonary inflammation that was largely independent of MMP activity but generated circulating bioactive peptides through predominantly MMP-dependent pathways. This MWCNT-induced lung-derived bioactivity caused pathological consequences of endothelial inflammation and barrier disruption.


Assuntos
Nanotubos de Carbono , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Células Endoteliais , Ácidos Hidroxâmicos , Pulmão , Inibidores de Metaloproteinases de Matriz/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente
3.
J Health Psychol ; 26(5): 623-635, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786780

RESUMO

Living with a rare disease can present unique challenges not shared by individuals with common diseases. A content analysis explored which challenges, in participants' own words, are most prevalent across a sample of individuals (n = 1157) with diverse rare diseases in the United States. Symptoms, activity limitations, treatments, uncertainty, and companionship support were mentioned most. Differences across the most frequently mentioned codes were found among disease types, gender, income, years since diagnosis, and symptom duration. Results suggest a need for improved medical care to reduce activity limitations, increased awareness, social support, and access to information for people with rare diseases.


Assuntos
Doenças Raras , Apoio Social , Adulto , Humanos , Relações Interpessoais , Incerteza , Estados Unidos
4.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287860

RESUMO

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Assuntos
Poluentes Atmosféricos/toxicidade , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Atmosféricos/química , Dano ao DNA , Células Epiteliais , Humanos , Exposição por Inalação , Nanofibras/química , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de Superfície , Estados Unidos
5.
Toxicol Lett ; 334: 60-65, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961271

RESUMO

Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (Fe2O3) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of Fe2O3 (1 mg) or calcium chromate (CaCrO4; 100 µg; positive control) for 26 weeks (once per week). Shams were exposed to 50 µL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO4 and Fe2O3 significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO4 group and neared significance in the Fe2O3 group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Compostos de Cálcio/toxicidade , Carcinogênese/efeitos dos fármacos , Cromatos/toxicidade , Compostos Férricos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Animais , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Soldagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...