Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Harmful Algae ; 136: 102653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876527

RESUMO

Harmful algal bloom (HAB) toxins consumed by marine predators through fish prey can be lethal but studies on the resulting population consequences are lacking. Over the past approximately 20 years there have been large regional declines in some harbour seal populations around Scotland. Analyses of excreta (faeces and urine from live and dead seals and faecal samples from seal haulout sites) suggest widespread exposure to toxins through the ingestion of contaminated prey. A risk assessment model, incorporating concentrations of the two major HAB toxins found in seal prey around Scotland (domoic acid (DA), and saxitoxins (STX)), the seasonal persistence of the toxins in the fish and the foraging patterns of harbour seals were used to estimate the proportion of adults and juveniles likely to have ingested doses above various estimated toxicity thresholds. The results were highly dependent on toxin type, persistence, and foraging regime as well as age class, all of which affected the proportion of exposed animals exceeding toxicity thresholds. In this preliminary model STX exposure was unlikely to result in mortalities. Modelled DA exposure resulted in doses above an estimated lethal threshold of 1900 µg/kg body mass affecting up to 3.8 % of exposed juveniles and 5.3 % of exposed adults. Given the uncertainty in the model parameters and the limitations of the data these conclusions should be treated with caution, but they indicate that DA remains a potential factor involved in the regional declines of harbour seals. Similar risks may be experienced by other top predators, including small cetaceans and seabirds that feed on similar prey in Scottish waters.


Assuntos
Proliferação Nociva de Algas , Animais , Escócia , Medição de Risco , Phoca , Toxinas Marinhas/análise , Ácido Caínico/análogos & derivados , Saxitoxina/análise , Exposição Ambiental
2.
J Fish Biol ; 104(3): 576-589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934068

RESUMO

Elasmobranchs are facing global decline, and so there is a pressing need for research into their populations to inform effective conservation and management strategies. Little information exists on the population ecology of skate species around the British Isles, presenting an important knowledge gap that this study aimed to reduce. The population ecology of thornback ray (Raja clavata) around the Shetland Islands, Scotland, was investigated in two habitats: inshore (50-150 m deep) and shallow coastal (20-50 m deep), from 2011 to 2022, and 2017 to 2022, respectively. Using trawl survey data from the annual Shetland Inshore Fish Survey, the size composition of R. clavata catches was compared between shallow and inshore habitats across 157 trawl sets, and 885 individuals, over the years 2017-2022. Catch per unit effort (CPUE) of R. clavata was significantly higher in shallow than that in inshore areas (ANOVA, F = 72.52, df = 1, 5, p < 0.001). Size composition also significantly differed between the two habitats (analysis of similarities, R = 0.96, p = 0.002), with R. clavata being smaller in shallow areas and juveniles (<60 cm) occurring more frequently. Spatial distribution maps confirmed density hotspots of juveniles in shallow habitats, with repeated use of certain locations consistent over time. The results of this study provide the first evidence for R. clavata using shallow areas for potential nurseries in Shetland, which can inform the IUCN's Important Shark and Ray Area process. Furthermore, this study provides important new population ecology information for R. clavata around Shetland, which may have important conservation implications and be valuable for informing species and fisheries stock assessments in this region.


Assuntos
Rajidae , Animais , Ecologia , Reino Unido , Escócia , Ecossistema , Pesqueiros
3.
Harmful Algae ; 105: 102068, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303514

RESUMO

Harmful algal bloom events are increasing in a number of water bodies around the world with significant economic impacts on the aquaculture, fishing and tourism industries. As well as their potential impacts on human health, toxin exposure from harmful algal blooms (HABs) has resulted in widespread morbidity and mortality in marine life, including top marine predators. There is therefore a need for an improved understanding of the trophic transfer, and persistence of toxins in marine food webs. For the first time, the concentrations of two toxin groups of commercial and environmental importance, domoic acid (DA) and saxitoxin (including Paralytic Shellfish Toxin (PST) analogues), were measured in the viscera of 40 different fish species caught in Scotland between February and November, 2012 to 2019. Overall, fish had higher concentrations of DA compared to PSTs, with a peak in the summer / autumn months. Whole fish concentrations were highest in pelagic species including Atlantic mackerel and herring, key forage fish for marine predators including seals, cetaceans and seabirds. The highest DA concentrations were measured along the east coast of Scotland and in Orkney. PSTs showed highest concentrations in early summer, consistent with phytoplankton bloom timings. The detection of multiple toxins in such a range of demersal, pelagic and benthic fish prey species suggests that both the fish, and by extension, piscivorous marine predators, experience multiple routes of toxin exposure. Risk assessment models to understand the impacts of exposure to HAB toxins on marine predators therefore need to consider how chronic, low-dose exposure to multiple toxins, as well as acute exposure during a bloom, could lead to potential long-term health effects ultimately contributing to mortalities. The potential synergistic, neurotoxic and physiological effects of long-term exposure to multiple toxins require investigation in order to appropriately assess the risks of HAB toxins to fish as well as their predators.


Assuntos
Proliferação Nociva de Algas , Saxitoxina , Animais , Cadeia Alimentar , Humanos , Fitoplâncton , Escócia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...