Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 718213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631600

RESUMO

Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Biofilmes , Cisteamina , Glicina , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Virulência
2.
PLoS One ; 15(12): e0242945, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370348

RESUMO

BACKGROUND: Emerging data suggests a possible role for cysteamine as an adjunct treatment for pulmonary exacerbations of cystic fibrosis (CF) that continue to be a major clinical challenge. There are no studies investigating the use of cysteamine in pulmonary exacerbations of CF. This exploratory randomized clinical trial was conducted to answer the question: In future pivotal trials of cysteamine as an adjunct treatment in pulmonary exacerbations of CF, which candidate cysteamine dosing regimens should be tested and which are the most appropriate, clinically meaningful outcome measures to employ as endpoints? METHODS AND FINDINGS: Multicentre double-blind randomized clinical trial. Adults experiencing a pulmonary exacerbation of CF being treated with standard care that included aminoglycoside therapy were randomized equally to a concomitant 14-day course of placebo, or one of 5 dosing regimens of cysteamine. Outcomes were recorded on days 0, 7, 14 and 21 and included sputum bacterial load and the patient reported outcome measures (PROMs): Chronic Respiratory Infection Symptom Score (CRISS), the Cystic Fibrosis Questionnaire-Revised (CFQ-R); FEV1, blood leukocyte count, and inflammatory markers. Eighty nine participants in fifteen US and EU centres were randomized, 78 completed the 14-day treatment period. Cysteamine had no significant effect on sputum bacterial load, however technical difficulties limited interpretation. The most consistent findings were for cysteamine 450mg twice daily that had effects additional to that observed with placebo, with improved symptoms, CRISS additional 9.85 points (95% CI 0.02, 19.7) p = 0.05, reduced blood leukocyte count by 2.46x109 /l (95% CI 0.11, 4.80), p = 0.041 and reduced CRP by geometric mean 2.57 nmol/l (95% CI 0.15, 0.99), p = 0.049. CONCLUSION: In this exploratory study cysteamine appeared to be safe and well-tolerated. Future pivotal trials investigating the utility of cysteamine in pulmonary exacerbations of CF need to include the cysteamine 450mg doses and CRISS and blood leukocyte count as outcome measures. CLINICAL TRIAL REGISTRATION: NCT03000348; www.clinicaltrials.gov.


Assuntos
Cisteamina/administração & dosagem , Cisteamina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Pulmão/efeitos dos fármacos , Administração Oral , Adulto , Cisteamina/efeitos adversos , Feminino , Humanos , Masculino , Adesão à Medicação , Segurança
3.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581193

RESUMO

Cysteamine is an endogenous aminothiol produced in mammalian cells as a consequence of coenzyme A metabolism through the activity of the vanin family of pantetheinase ectoenzymes. It is known to have a biological role in oxidative stress, inflammation, and cell migration. There have been several reports demonstrating anti-infective properties targeting viruses, bacteria, and even the malarial parasite. We and others have previously described broad-spectrum antimicrobial and antibiofilm activities of cysteamine. Here, we go further to demonstrate redox-dependent mechanisms of action for the compound and how its antimicrobial effects are, at least in part, due to undermining bacterial defenses against oxidative and nitrosative challenges. We demonstrate the therapeutic potentiation of antibiotic therapy against Pseudomonas aeruginosa in mouse models of infection. We also demonstrate potentiation of many different classes of antibiotics against a selection of priority antibiotic-resistant pathogens, including colistin (often considered an antibiotic of last resort), and we discuss how this endogenous antimicrobial component of innate immunity has a role in infectious disease that is beginning to be explored and is not yet fully understood.


Assuntos
Cistamina/farmacologia , Cisteamina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
4.
Microbiology (Reading) ; 157(Pt 8): 2339-2347, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21546588

RESUMO

Enterohaemorrhagic Escherichia coli O157 : H7 is a major foodborne and environmental pathogen responsible for both sporadic cases and outbreaks of food poisoning, which can lead to serious sequelae, such as haemolytic uraemic syndrome. The structural subunit of E. coli O157 : H7 flagella is flagellin, which is both the antigenic determinant of the H7 serotype, an important factor in colonization, and an immunomodulatory protein that has been determined to be a major pro-inflammatory component through the instigation of host cell signalling pathways. Flagellin has highly conserved N- and C-terminal regions that are recognized by the host cell pattern recognition receptor Toll-like receptor (TLR) 5. Activation of this receptor triggers cell signalling cascades, which are known to activate host cell kinases and transcription factors that respond with the production of inflammatory mediators such as the chemokine interleukin-8 (IL-8), although the exact components of this pathway are not yet fully characterized. We demonstrate that E. coli O157 : H7-derived flagellin induces rapid phosphorylation of the epidermal growth factor receptor (EGFR), as an early event in intestinal epithelial cell signalling, and that this is required for the release of the pro-inflammatory cytokine IL-8.


Assuntos
Células Epiteliais/imunologia , Receptores ErbB/metabolismo , Escherichia coli O157/imunologia , Proteínas de Escherichia coli/imunologia , Flagelina/imunologia , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Células CACO-2 , Proteínas de Escherichia coli/genética , Flagelina/genética , Humanos , Fosforilação , Transdução de Sinais , Receptor 5 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...