Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 52(4): 1628-1644, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38261968

RESUMO

A growing body of evidence indicates an important role of miRNAs in cancer; however, there is no definitive, convenient-to-use list of cancer-related miRNAs or miRNA genes that may serve as a reference for analyses of miRNAs in cancer. To this end, we created a list of 165 cancer-related miRNA genes called the Cancer miRNA Census (CMC). The list is based on a score, built on various types of functional and genetic evidence for the role of particular miRNAs in cancer, e.g. miRNA-cancer associations reported in databases, associations of miRNAs with cancer hallmarks, or signals of positive selection of genetic alterations in cancer. The presence of well-recognized cancer-related miRNA genes, such as MIR21, MIR155, MIR15A, MIR17 or MIRLET7s, at the top of the CMC ranking directly confirms the accuracy and robustness of the list. Additionally, to verify and indicate the reliability of CMC, we performed a validation of criteria used to build CMC, comparison of CMC with various cancer data (publications and databases), and enrichment analyses of biological pathways and processes such as Gene Ontology or DisGeNET. All validation steps showed a strong association of CMC with cancer/cancer-related processes confirming its usefulness as a reference list of miRNA genes associated with cancer.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Reprodutibilidade dos Testes
2.
Mol Psychiatry ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052982

RESUMO

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

3.
Geroscience ; 44(6): 2671-2684, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947335

RESUMO

DNA methylation (DNAm) patterns across the genome changes during aging and development of complex diseases including type 2 diabetes (T2D). Our study aimed to estimate DNAm trajectories of CpG sites associated with T2D, epigenetic age (DNAmAge), and age acceleration based on four epigenetic clocks (GrimAge, Hannum, Horvath, phenoAge) in the period 10 years prior to and up to T2D onset. In this nested case-control study within Doetinchem Cohort Study, we included 132 incident T2D cases and 132 age- and sex-matched controls. DNAm was measured in blood using the Illumina Infinium Methylation EPIC array. From 107 CpG sites associated with T2D, 10 CpG sites (9%) showed different slopes of DNAm trajectories over time (p < 0.05) and an additional 8 CpG sites (8%) showed significant differences in DNAm levels (at least 1%, p-value per time point < 0.05) at all three time points with nearly parallel trajectories between incident T2D cases and controls. In controls, age acceleration levels were negative (slower epigenetic aging), while in incident T2D cases, levels were positive, suggesting accelerated aging in the case group. We showed that DNAm levels at specific CpG sites, up to 10 years before T2D onset, are different between incident T2D cases and healthy controls and distinct patterns of clinical traits over time may have an impact on those DNAm profiles. Up to 10 years before T2D diagnosis, cases manifested accelerated epigenetic aging. Markers of biological aging including age acceleration estimates based on Horvath need further investigation to assess their utility for predicting age-related diseases including T2D.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Humanos , Metilação de DNA/genética , Epigênese Genética/genética , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Ilhas de CpG/genética , Envelhecimento/genética
4.
Clin Epigenetics ; 14(1): 82, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773726

RESUMO

Given the global increase in air pollution and its crucial role in human health, as well as the steep rise in prevalence of metabolic syndrome (MetS), a better understanding of the underlying mechanisms by which environmental pollution may influence MetS is imperative. Exposure to air pollution is known to impact DNA methylation, which in turn may affect human health. This paper comprehensively reviews the evidence for the hypothesis that the effect of air pollution on the MetS is mediated by DNA methylation in blood. First, we present a summary of the impact of air pollution on metabolic dysregulation, including the components of MetS, i.e., disorders in blood glucose, lipid profile, blood pressure, and obesity. Then, we provide evidence on the relation between air pollution and endothelial dysfunction as one possible mechanism underlying the relation between air pollution and MetS. Subsequently, we review the evidence that air pollution (PM, ozone, NO2 and PAHs) influences DNA methylation. Finally, we summarize association studies between DNA methylation and MetS. Integration of current evidence supports our hypothesis that methylation may partly mediate the effect of air pollution on MetS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndrome Metabólica , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Metilação de DNA , Exposição Ambiental/efeitos adversos , Humanos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Prevalência
5.
Diabetologia ; 65(5): 763-776, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35169870

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS: We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS: The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION: By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.


Assuntos
Diabetes Mellitus Tipo 2 , Epigenoma , Ilhas de CpG/genética , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Estudos Prospectivos
6.
Nat Commun ; 12(1): 7173, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887389

RESUMO

Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.


Assuntos
Epigenoma , Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/genética , Ácido Úrico/sangue , Sistema y+ de Transporte de Aminoácidos/genética , Estudos de Coortes , Ilhas de CpG , Metilação de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Gota/sangue , Humanos , Masculino
7.
Nat Commun ; 12(1): 7174, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887417

RESUMO

Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.


Assuntos
Metilação de DNA , Insuficiência Renal Crônica/genética , Adulto , Idoso , Ilhas de CpG , Feminino , Taxa de Filtração Glomerular , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Testes de Função Renal , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Environ Int ; 144: 106016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916427

RESUMO

BACKGROUND: Exposure to environmental endocrine disrupting chemicals (EDCs) may play an important role in the epidemic of metabolic diseases. Epigenetic alterations may functionally link EDCs with gene expression and metabolic traits. OBJECTIVES: We aimed to evaluate metabolic-related effects of the exposure to endocrine disruptors including five parabens, three bisphenols, and 13 metabolites of nine phthalates as measured in 24-hour urine on epigenome-wide DNA methylation. METHODS: A blood-based epigenome-wide association study was performed in 622 participants from the Lifelines DEEP cohort using Illumina Infinium HumanMethylation450 methylation data and EDC excretions in 24-hour urine. Out of the 21 EDCs, 13 compounds were detected in >75% of the samples and, together with bisphenol F, were included in these analyses. Furthermore, we explored the putative function of identified methylation markers and their correlations with metabolic traits. RESULTS: We found 20 differentially methylated cytosine-phosphate-guanines (CpGs) associated with 10 EDCs at suggestive p-value < 1 × 10-6, of which four, associated with MEHP and MEHHP, were genome-wide significant (Bonferroni-corrected p-value < 1.19 × 10-7). Nine out of 20 CpGs were significantly associated with at least one of the tested metabolic traits, such as fasting glucose, glycated hemoglobin, blood lipids, and/or blood pressure. 18 out of 20 EDC-associated CpGs were annotated to genes functionally related to metabolic syndrome, hypertension, obesity, type 2 diabetes, insulin resistance and glycemic traits. CONCLUSIONS: The identified DNA methylation markers for exposure to the most common EDCs provide suggestive mechanism underlying the contributions of EDCs to metabolic health. Follow-up studies are needed to unravel the causality of EDC-induced methylation changes in metabolic alterations.


Assuntos
Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Disruptores Endócrinos/toxicidade , Epigênese Genética , Epigenoma , Epigenômica , Estudo de Associação Genômica Ampla , Humanos
9.
Hypertension ; 76(1): 195-205, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32520614

RESUMO

We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.


Assuntos
Pressão Sanguínea/genética , Ilhas de CpG/genética , Metilação de DNA , Epigenoma/genética , Hipertensão Essencial/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Idoso , População Negra/estatística & dados numéricos , Índice de Massa Corporal , Estudos de Coortes , Doenças em Gêmeos/epidemiologia , Doenças em Gêmeos/genética , Hipertensão Essencial/epidemiologia , Hipertensão Essencial/etnologia , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estudos em Gêmeos como Assunto , População Branca/estatística & dados numéricos , Adulto Jovem
10.
Clin Epigenetics ; 12(1): 14, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959221

RESUMO

BACKGROUND: Severe obesity is a growing, worldwide burden and conventional therapies including radical change of diet and/or increased physical activity have limited results. Bariatric surgery has been proposed as an alternative therapy showing promising results. It leads to substantial weight loss and improvement of comorbidities such as type 2 diabetes. Increased adiposity is associated with changes in epigenetic profile, including DNA methylation. We investigated the effect of bariatric surgery on clinical profile, DNA methylation, and biological age estimated using Horvath's epigenetic clock. RESULTS: To determine the impact of bariatric surgery and subsequent weight loss on clinical traits, a cohort of 40 severely obese individuals (BMI = 30-73 kg/m2) was examined at the time of surgery and at three follow-up visits, i.e., 3, 6, and 12 months after surgery. The majority of the individuals were women (65%) and the mean age at surgery was 45.1 ± 8.1 years. We observed a significant decrease over time in BMI, fasting glucose, HbA1c, HOMA-IR, insulin, total cholesterol, triglycerides, LDL and free fatty acids levels, and a significant small increase in HDL levels (all p values < 0.05). Epigenome-wide association analysis revealed 4857 differentially methylated CpG sites 12 months after surgery (at Bonferroni-corrected p value < 1.09 × 10-7). Including BMI change in the model decreased the number of significantly differentially methylated CpG sites by 51%. Gene set enrichment analysis identified overrepresentation of multiple processes including regulation of transcription, RNA metabolic, and biosynthetic processes in the cell. Bariatric surgery in severely obese patients resulted in a decrease in both biological age and epigenetic age acceleration (EAA) (mean = - 0.92, p value = 0.039). CONCLUSIONS: Our study shows that bariatric surgery leads to substantial BMI decrease and improvement of clinical outcomes observed 12 months after surgery. These changes explained part of the association between bariatric surgery and DNA methylation. We also observed a small, but significant improvement of biological age. These epigenetic changes may be modifiable by environmental lifestyle factors and could be used as potential biomarkers for obesity and in the future for obesity related comorbidities.


Assuntos
Envelhecimento , Cirurgia Bariátrica , Metilação de DNA , Obesidade Mórbida/cirurgia , Adulto , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/diagnóstico , Obesidade Mórbida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...