Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890895

RESUMO

Implementing intelligent reflecting surfaces (IRSs), in high frequency based beyond 5G networks, has become a necessity to overcome the harsh blockage issues that exist in these bands. IRSs can supply user equipment (UEs) with multi alternative virtual line of sight (LOS) links, hence enhancing the spectral efficiency (SE) of the system. As a result of deploying multi IRSs as communication assistants, the step of IRSs-UEs association is required to optimally assign each UE to its best IRS; consideration of the interference between different links is needed, to maximize the system performance. However, this process will be a time and power consuming problem, if conventional schemes, which exhaustively search all possible association patterns to find the optimum one for communication, is adapted. Although iterative search based schemes can reduce this complexity, they still need feedback signaling in real time. Hence, they will be inefficient in terms of power consumption and delay. Moreover, optimal placement of the multi-IRSs in the network, to enlarge the system performance, is still an open issue and needs to be studied. Consequently, in this paper, to handle the IRSs-UEs association problem, we propose a neural network (NN) based scheme using a multi-IRSs aided multi input multi output (MIMO) system. In this system, the estimated angles of arrival (AoAs) of UEs are used as input features for the NN, which is trained to associate each UE to its best IRS based on this information; then, within each IRS, passive beamforming is performed. Adapting this NN in online mode guarantees obtaining better performance while relaxing the complexity of association and increasing response time, giving a performance comparable to the exhaustive and iterative search based schemes. The proposed NN based scheme determines the association pattern without searching or feedback signals. Moreover, the proposed approach maintains the system SE nearly similar to the optimum performance obtained by the conventional scheme. Secondly, a criterion is suggested for optimal deployment of multi IRSs in the network, depending on maximizing the average summation UEs signal-to-interference-plus-noise ratio (SINR). Numerical results prove that this strategy outperforms a reference one, which aims to guarantee certain performance by maximizing minimum UE SINR. In contrast the proposed strategy achieves better system and per UE spectral efficiency.


Assuntos
Redes Neurais de Computação , Tecnologia sem Fio , Retroalimentação , Razão Sinal-Ruído , Tecnologia sem Fio/instrumentação
2.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214385

RESUMO

Following the automation of monitoring systems for pollution levels in cities or protected nature reserves, there comes a need to increase the autonomy of robotic vectors deployed in the field. Thus, it is important to consider the weight that these robots must hold in order to be able to carry out a comprehensive analysis of the environment. A balance must be struck in the size, weight, and complexity of the mobile laboratories used for measurement and the autonomy of robots, especially given that current technology does not allow, in most cases, a completely autonomous battery charging cycle. Thus, in this paper, we consider a microcontroller-based architecture for a mobile laboratory control system that will be used for installation on both an aerial and an aquatic mobile vector. We found that such a system can be repurposed for several sensor types and configurations, thus being able to massively reduce the space allocated when compared to embedded widespread products.


Assuntos
Laboratórios , Robótica , Automação , Cidades
3.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214355

RESUMO

With the decrease in the cost and size of drones in recent years, their number has also increased exponentially. As such, the concerns regarding security aspects that are raised by their presence are also becoming more serious. The necessity of designing and implementing systems that are able to detect and provide defense actions against such threats has become apparent. In this paper, we perform a survey regarding the different drone detection and defense systems that were proposed in the literature, based on different types of methods (i.e., radio frequency (RF), acoustical, optical, radar, etc.), with an emphasis on RF-based systems implemented using software-defined radio (SDR) platforms. We have followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines in order to provide a concise and thorough presentation of the current status of the subject. In the final part, we also describe our own solution that was designed and implemented in the framework of the DronEnd research project. The DronEnd system is based on RF methods and uses SDR platforms as the main hardware elements.


Assuntos
Software , Dispositivos Aéreos não Tripulados , Radar
4.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062568

RESUMO

This paper presents a technical solution that addresses mission-critical communications by extending the radio frequency coverage area using a flexible and scalable architecture. One of the main objectives is to improve both the reaction time and the coordination between mission-critical practitioners, also called public protection and disaster relief users, that operate in emergency scenarios. Mission-critical services such as voice and data should benefit from reliable communication systems that offer high availability, prioritization and flexible architecture. In this paper, we considered Terrestrial Trunked Radio (TETRA), the mobile radio standard used for mission-critical communications, as it has been designed in this respect and is widely used by first responder organizations. Even if RF coverage is designed before network deployment and continuously updated during the lifetime of the technology, some white areas may exist and should be covered by supplementary base stations or repeaters. The model presented in this paper is an optical repeater for TETRA standard that can offer up to 52.6 dB downlink, 65.6 dB uplink gain and up to 3.71 km coverage distance in a radiating cable installation scenario. The design in not limited, as it can be extended to several different mobile radio standards using the same principle. Flexibility and scalability attributes are taken into consideration, as they can build a cost-effective deployment considering both capital and operational expenditures.

5.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023170

RESUMO

The world population is growing in an accelerated way urging the need for a more efficient and sustainable agricultural industry. Initially developed for smart cities which face the same challenges caused by an increasing population, Internet of Things (IoT) technologies have evolved rapidly over the last few years and are now moving successfully to agriculture. Wireless Sensor Networks (WSNs) have been reported to be used in the agri-food sector and could answer the call for a more optimized agricultural management. This paper investigates a PCB-made interdigited capacitive (IDC) soil humidity sensor as a low-price alternative to the existing ones on the market. An in-depth comparative study is performed on 30 design variations, part of them also manufactured for further investigations. By measurements and simulations, the influence of the aspect ratio and dielectric thickness on the sensitivity and capacitance of the sensor are studied. In the end, a Humidity and Temperature Measurement Wireless Equipment (HTMWE) for IoT agriculture applications is implemented with this type of sensor.

6.
J Med Syst ; 39(11): 141, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26345453

RESUMO

Big data storage and processing are considered as one of the main applications for cloud computing systems. Furthermore, the development of the Internet of Things (IoT) paradigm has advanced the research on Machine to Machine (M2M) communications and enabled novel tele-monitoring architectures for E-Health applications. However, there is a need for converging current decentralized cloud systems, general software for processing big data and IoT systems. The purpose of this paper is to analyze existing components and methods of securely integrating big data processing with cloud M2M systems based on Remote Telemetry Units (RTUs) and to propose a converged E-Health architecture built on Exalead CloudView, a search based application. Finally, we discuss the main findings of the proposed implementation and future directions.


Assuntos
Computação em Nuvem , Redes de Comunicação de Computadores/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Telemedicina/instrumentação , Segurança Computacional , Humanos , Armazenamento e Recuperação da Informação , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...