RESUMO
This study investigates the combined effects of nanoscale surface roughness and electron-phonon interaction on the vibrational modes of cadmium telluride (CdTe) using resonant Raman spectroscopy. Raman spectra simulations aided in identifying the active phonon modes and their dependence on roughness. Our results reveal that increasing surface roughness leads to an asymmetric line shape in the first-order longitudinal optical (1LO) phonon mode, attributed to an increase in the electron-phonon interaction. This asymmetry broadens the entire Raman spectrum. Conversely, the overtone (second-order longitudinal optical [2LO]) mode exhibits a symmetrical line shape that intensifies with roughness. Additionally, we identify and discuss the contributions of surface optical phonon mode and multiphonon modes to the Raman spectra, highlighting their dependence on roughness. This work offers a deeper understanding of how surface roughness and electron-phonon scattering influence the line shape of CdTe resonant Raman spectra, providing valuable insights into its vibrational properties.
RESUMO
A modified clay cup (cantarito) microbial fuel cell (C-MFCs) was designed to digest the biomass effluent from a nopal biogas (NBE). To improve the process, commercial acrylic varnish (AV) was applied to the C-MFCs. The experiment was performed as:Both-C-MFCs, painting of AV on both sides of the clay cup; In-C-MFCs, painting of AV on the internal side, and Out-C-MFCs painting of AV on the external side. The order for the maximum volumetric power densities were Both-C-MFCs (1841.99 mW/m3)>Out-C-MFCs (1023.74 mW/m3) >In-C-MFCs (448.90 mW/m3). The control experiment without applied varnish did not show a stable potential, supporting the idea that the acryloyl group in varnish could favor the performance. Finally, a 4-digits clock was powered with two, Both-C-MFCs connected in series; the microbial diversity in this format was explored and a well-defined bacterial community including members of the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Synergistetes and candidate division TM7 was found.
RESUMO
In this work, a method based on Raman spectroscopy in combination with Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA) has been developed for the rapid differentiation of heterofermentative related lactobacilli. In a first approach, Lactobacillus kefir strains were discriminated from other species of heterofermentative lactobacilli: Lb. parakefir and Lb. brevis. After this first approach, PCA allowed for a clear differentiation between Lb. parakefir and Lb.brevis. For the first level of discrimination, PCA was performed on the whole spectra and also on delimited regions, defined taking into consideration the loading values. The best regions allowing a clear differentiation between Lb. kefir and non-Lb. kefir strains were found to be: the 1700-1500 cm(-1), 1500-1185 cm(-1) and 1800-400 (whole spectrum) cm(-1) Raman ranges. In order to develop a classification rule, PLS-DA was carried out on the mentioned regions. This method permitted the discrimination and classification of the strains under study in two groups: Lb. kefir and non-Lb. kefir. The model was further validated using lactobacilli strains from different culture collections or strains isolated from kefir grains previously identified using molecular methods. The second approach based on PCA was also performed on the whole spectra and on delimited regions, being the regions 1700-1500 cm(-1), 1500-1185 cm(-1) and 1185-1020 cm(-1), i.e., those allowing the clearest discrimination between Lb. parakefir and Lb. brevis. The results obtained in this work, allowed a clear discrimination within heterofermentative lactobacilli strains, proteins being the biological structures most determinant for this discrimination.
Assuntos
Lactobacillus/química , Lactobacillus/classificação , Análise Espectral Raman , Técnicas Bacteriológicas , Análise de Componente Principal , Especificidade da EspécieRESUMO
The capability to obtain quantitative information of a simple way from Raman spectra is a subject of considerable interest. In this work, this is demonstrated for mixtures of ethanol with water and rhodamine-6G (R-6G) with methanol, which were analyzed directly in glass vessel. The Raman intensities and a simple mathematical model have been used and applied for the analysis of liquid samples. It is starting point to generate a general expression, from the experimental spectra, as the sum of the particular expression for each pure compound allow us to obtain an expression for the mixtures which can be used for determining concentrations, from the Raman spectrum, of the mixture.
Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Etanol/análise , Metanol/análise , Modelos Teóricos , Rodaminas/análise , Água/análiseRESUMO
The potential of Raman spectroscopy in the quantitative analysis of dilute organic contaminants on aluminum substrates is evidenced in this work. Methyl-parathion microdroplets, an organophosphorus pesticide, has been used as a probe for this purpose. The samples were analyzed on an aluminum foil, which is very easy to acquire and to adapt. Moreover, aluminum foil does not need a previous treatment. Linear and no-linear curves as a function of the concentration of methyl-parathion versus the Raman intensity of the 1345 and 1110 cm(-1) peaks were established by means of a simple mathematical expression. A comparison with calibration curves fits very well, allowing quantification at concentration levels as low as parts per million.