Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Genes Evol ; 222(6): 361-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22945369

RESUMO

The Rho GTP exchange factor, Pebble (Pbl), long recognised as an essential activator of Rho during cytokinesis, also regulates mesoderm migration at gastrulation. Like other cell cycle components, pbl expression patterns broadly correlate with proliferative tissue. Surprisingly, in spite of its role in the early mesoderm, pbl is downregulated in the presumptive mesoderm before ventral furrow formation. Here, we show that this mesoderm-specific repression of pbl is dependent on the transcriptional repressor Snail (Sna). pbl repression was lost in sna mutants but was unaffected when Sna was ectopically expressed, showing that Sna is necessary, but not sufficient, for pbl repression. Using DamID, the first intron of pbl was identified as a Sna-binding region. Nine sites with the Sna-binding consensus motif CAGGT[GA] were identified in this intron. Mutating these to TAGGC[GA] abolished the ventral repression of pbl. Surprisingly, Sna-dependent repression of pbl was not essential for viability or fertility. Loss of repression did, however, increase the frequency of low-penetrance gastrulation defects. Consistent with this, expression of a pbl-GFP transgene in the presumptive mesoderm generated similar gastrulation defects. Finally, we show that a cluster of Snail-binding sites in the middle of the first intron of pbl orthologues is a conserved feature in the other 11 sequenced Drosophila species. We conclude that pbl levels are precisely regulated to ensure that there is enough protein available for its role in early mesoderm development but not so much as to inhibit the orderly progression of gastrulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila/genética , Embrião não Mamífero/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Culicidae/embriologia , Culicidae/genética , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Gastrulação , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
2.
Dev Biol ; 372(1): 17-27, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000359

RESUMO

The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mesoderma/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Movimento Celular , Drosophila/genética , Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
3.
J Biol Chem ; 285(37): 28667-73, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20628062

RESUMO

The assembly and constriction of an actomyosin contractile ring in cytokinesis is dependent on the activation of Rho at the equatorial cortex by a complex, here termed the cytokinesis initiation complex, between a microtubule-associated kinesin-like protein (KLP), a member of the RacGAP family, and the RhoGEF Pebble. Recently, the activity of the mammalian Polo kinase ortholog Plk1 has been implicated in the formation of this complex. We show here that Polo kinase interacts directly with the cytokinesis initiation complex by binding RacGAP50C. We find that a new domain of Polo kinase, termed the intermediate domain, interacts directly with RacGAP50C and that Polo kinase is essential for localization of the KLP-RacGAP centralspindlin complex to the cell equator and spindle midzone. In the absence of Polo kinase, RacGAP50C and Pav-KLP fail to localize normally, instead decorating microtubules along their length. Our results indicate that Polo kinase directly binds the conserved cytokinesis initiation complex and is required to trigger centralspindlin localization as a first step in cytokinesis.


Assuntos
Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Ativadoras de GTPase/genética , Cinesinas/genética , Cinesinas/metabolismo , Complexos Multiproteicos/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA