Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 25(7): 363-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23796015

RESUMO

Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20 mg/m(3), for durations lasting up to 8 h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m(3) of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10 min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles.


Assuntos
Câmaras de Exposição Atmosférica , Quartzo/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Computadores , Tamanho da Partícula
2.
J Toxicol Environ Health A ; 66(11): 1015-27, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12775514

RESUMO

Asphalt fumes have been reported to produce nasal irritation in road workers. Since inhaled irritants can increase substance P (SP) production in airway neurons, the effects of asphalt fumes on SP production in trigeminal ganglia (TG) sensory neurons innervating the nasal mucosa were investigated. The effects of asphalt fumes on nasal mucosal innervation were examined by measuring SP and calcitonin-gene-related peptide (CGRP) levels in rat TG neurons projecting to the nasal epithelium. Female Sprague-Dawley rats were exposed to asphalt fumes at 16.0 +/- 8.1mg /m3 for 5 consecutive days, 3.5 h/d. Inflammatory cells were measured in nasal cavity lavage fluid. SP and CGRP immunoreactivity (IR) was measured in the cell bodies of trigeminal ganglion sensory neurons projecting to the nasal cavity. A significant increase in neutrophils and macrophages was observed after asphalt fume exposure indicating an inflammatory response in the nasal cavity. The percentage of SP-IR neurons increased significantly in the asphalt-exposed rats, and the proportion of CGRP-IR neurons was also elevated following asphalt exposure. These results indicate that exposure to asphalt fumes produces inflammation and increases the levels of SP and CGRP in TG neurons projecting to the nasal epithelium. The findings are consistent with asphalt-induced activation of sensory C-fibers in the nasal cavity. Enhanced sensory neuropeptide release from nerve terminals in the nasal cavity may produce neurogenic inflammation associated with nasal irritation following exposure to asphalt fumes.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Hidrocarbonetos/toxicidade , Mucosa Nasal/inervação , Mucosa Nasal/metabolismo , Neurônios/metabolismo , Substância P/metabolismo , Animais , Epitélio/inervação , Epitélio/metabolismo , Feminino , Imuno-Histoquímica , Inflamação , Exposição por Inalação , Microesferas , Ratos , Ratos Sprague-Dawley , Rodaminas , Irrigação Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...