Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Ther ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037536

RESUMO

INTRODUCTION: A dynamic molecular biomarker that can identify early efficacy of immune checkpoint inhibitor (ICI) therapy remains an unmet clinical need. Here we evaluate if a novel circulating tumor DNA (ctDNA) assay, xM, used for treatment response monitoring (TRM), that quantifies changes in ctDNA tumor fraction (TF), can predict outcome benefits in patients treated with ICI alone or in combination with chemotherapy in a real-world (RW) cohort. METHODS: This retrospective study consisted of patients with advanced cancer from the Tempus de-identified clinical genomic database who received longitudinal liquid-based next-generation sequencing. Eligible patients had a blood sample ≤ 40 days prior to the start of ICI initiation and an on-treatment blood sample 15-180 days post ICI initiation. TF was calculated via an ensemble algorithm that utilizes TF estimates derived from variants and copy number information. Patients with molecular response (MR) were defined as patients with a ≥ 50% decrease in TF between tests. In the subset of patients with rw-imaging data between 2 and 18 weeks of ICI initiation, the predictive value of MR in addition to rw-imaging was compared to a model of rw-imaging alone. RESULTS: The evaluable cohort (N = 86) was composed of 14 solid cancer types. Patients received either ICI monotherapy (38.4%, N = 33) or ICI in combination with chemotherapy (61.6%, N = 53). Patients with MR had significantly longer rw-overall survival (rwOS) (hazard ratio (HR) 0.4, P = 0.004) and rw-progression free survival (rwPFS) (HR 0.4, P = 0.005) than patients with molecular non-response (nMR). Similar results were seen in the ICI monotherapy subcohort; HR 0.2, P = 0.02 for rwOS and HR 0.2, P = 0.01 for rwPFS. In the subset of patients with matched rw-imaging data (N = 51), a model incorporating both MR and rw-imaging was superior in predicting rwOS than rw-imaging alone (P = 0.02). CONCLUSIONS: xM used for TRM is a novel serial quantitative TF algorithm that can be used clinically to evaluate ICI therapy efficacy.

2.
J Interferon Cytokine Res ; 34(9): 676-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24673249

RESUMO

Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21-22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome-DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection.


Assuntos
Cromatina/genética , Cromossomos Humanos Par 9 , Interferon Tipo I/genética , Família Multigênica , Nucleossomos/genética , Linhagem Celular , Cromatina/virologia , Mapeamento Cromossômico , DNA/genética , Regulação da Expressão Gênica , Humanos , Nucleossomos/virologia , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Vírus Sendai
3.
Cell Rep ; 4(5): 959-73, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23994473

RESUMO

Transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NFκB) are activated by external stimuli, including virus infection, to translocate to the nucleus and bind genomic targets important for immunity and inflammation. To investigate RNA polymerase II (Pol II) recruitment and elongation in the human antiviral gene regulatory network, a comprehensive genome-wide analysis was conducted during the initial phase of virus infection. Results reveal extensive integration of IRF3 and NFκB with Pol II and associated machinery and implicate partners for antiviral transcription. Analysis indicates that both de novo polymerase recruitment and stimulated release of paused polymerase work together to control virus-induced gene activation. In addition to known messenger-RNA-encoding loci, IRF3 and NFκB stimulate transcription at regions not previously associated with antiviral transcription, including abundant unannotated loci that encode novel virus-inducible RNAs (nviRNAs). These nviRNAs are widely induced by virus infections in diverse cell types and represent a previously overlooked cellular response to virus infection.


Assuntos
Fator Regulador 3 de Interferon/imunologia , NF-kappa B/metabolismo , RNA Polimerase II/imunologia , Infecções por Respirovirus/genética , Infecções por Respirovirus/imunologia , Transcrição Gênica , Expressão Gênica , Estudo de Associação Genômica Ampla , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Vírus Sendai/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo
4.
PLoS Biol ; 11(3): e1001524, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555195

RESUMO

The interaction of nuclear pore proteins (Nups) with active genes can promote their transcription. In yeast, some inducible genes interact with the nuclear pore complex both when active and for several generations after being repressed, a phenomenon called epigenetic transcriptional memory. This interaction promotes future reactivation and requires Nup100, a homologue of human Nup98. A similar phenomenon occurs in human cells; for at least four generations after treatment with interferon gamma (IFN-γ), many IFN-γ-inducible genes are induced more rapidly and more strongly than in cells that have not previously been exposed to IFN-γ. In both yeast and human cells, the recently expressed promoters of genes with memory exhibit persistent dimethylation of histone H3 lysine 4 (H3K4me2) and physically interact with Nups and a poised form of RNA polymerase II. However, in human cells, unlike yeast, these interactions occur in the nucleoplasm. In human cells transiently depleted of Nup98 or yeast cells lacking Nup100, transcriptional memory is lost; RNA polymerase II does not remain associated with promoters, H3K4me2 is lost, and the rate of transcriptional reactivation is reduced. These results suggest that Nup100/Nup98 binding to recently expressed promoters plays a conserved role in promoting epigenetic transcriptional memory.


Assuntos
Cromatina/metabolismo , Epigenômica/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Western Blotting , Núcleo Celular/genética , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...