Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 22(9): e51813, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357701

RESUMO

Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Nitratos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Curr Opin Plant Biol ; 47: 112-118, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30496968

RESUMO

Coordination between plant development and nutrient availability ensures a suitable supply of macromolecules for growth and developmental programs. Nitrate is an important source of nitrogen (N) that acts as a signal molecule to modulate gene expression, physiological, growth and developmental responses throughout the life of the plant. New key players in the nitrate signaling pathway have been described and knowledge of the molecular mechanics of how it impacts growth and developmental processes is increasing fast. Importantly, mechanisms for nitrate-control of growth and developmental processes have been proposed for both local as well as systemic responses. This article provides a synthesis of recent insights into molecular mechanisms by which nitrate impacts growth and development over Arabidopsis life-cycle.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Nitratos/metabolismo , Transdução de Sinais , Flores/fisiologia , Germinação , Sementes/crescimento & desenvolvimento
3.
J Exp Bot ; 68(10): 2541-2551, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369507

RESUMO

Nitrogen (N) is an essential macronutrient that impacts many aspects of plant physiology, growth, and development. Besides its nutritional role, N nutrient and metabolites act as signaling molecules that regulate the expression of a wide range of genes and biological processes. In this review, we describe recent advances in the understanding of components of the nitrate signaling pathway. Recent evidence posits that in one nitrate signaling pathway, nitrate sensed by NRT1.1 activates a phospholipase C activity that is necessary for increased cytosolic calcium levels. The nitrate-elicited calcium increase presumably activates calcium sensors, kinases, or phosphatases, resulting in changes in expression of primary nitrate response genes. Consistent with this model, nitrate treatments elicit proteome-wide changes in phosphorylation patterns in a wide range of proteins, including transporters, metabolic enzymes, kinases, phosphatases, and other regulatory proteins. Identifying and characterizing the function of the different players involved in this and other nitrate signaling pathways and their functional relationships is the next step to understand N responses in plants.


Assuntos
Arabidopsis/fisiologia , Cálcio/metabolismo , Nitratos/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fosforilação , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...