Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Q ; 41(1): 89-96, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33416037

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) represent a novel cellular mechanism of antimicrobial defense activity. Intravascular neutrophils produce extracellular web-like structures composed of chromatin, histones, and cytoplasmic granule proteins to attack and kill microbes. They may impact both pathogen and host; NETs correlate strongly with disseminated intravascular coagulation and mortality in critically ill humans. The mechanism was first discovered in human neutrophils in 2004. Presumptive heterophil extracellular traps (HETs) in a non-avian reptile species were first described in blood films of a gopher tortoise with systemic inflammation. OBJECTIVE: While prior reports are limited to blood film review and in vitro studies, this descriptive case series highlights the cytological identification of presumptive HETs in nine reptile patients. METHODS: Subjects included six gopher tortoises, one blood python (Python curtus), one Burmese python (P. bivittatus), and one desert king snake (Lampropeltis getula splendida). All six gopher tortoises (Gopherus polyphemus) had upper respiratory disease with bacterial etiology (including Helicobacter sp. and/or Mycoplasma sp.), and snakes had upper respiratory tract infection confirmed with serpentovirus (n = 2) or bacterial dermatitis (n = 1). RESULTS: Cytology samples with identified HETs included tissue imprints (n = 4), nasal discharge (n = 3), an oral swab (n = 1), and a fine needle aspirate of a skin lesion (n = 1). The identification of specific bacterial (n = 6) and/or viral pathogens (n = 2) was notable. CLINICAL RELEVANCE: To the authors' knowledge, this is the first report of presumptive HETs recognized in reptile cytology specimens, suggesting an active cellular process in vivo in response to systemic inflammation in non-avian reptiles, and contributing to further understanding of extracellular traps in these species.


Assuntos
Armadilhas Extracelulares , Inflamação/veterinária , Neutrófilos , Animais , Boidae/virologia , Colubridae/virologia , Feminino , Helicobacter , Infecções por Helicobacter/veterinária , Masculino , Mycoplasma , Infecções por Mycoplasma/veterinária , Nidovirales , Infecções por Nidovirales/veterinária , Tartarugas/microbiologia
2.
World J Surg ; 42(2): 514-520, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124354

RESUMO

INTRODUCTION: The parathyroid gland was first identified in the Indian rhinoceros in 1849 by Sir Richard Owen. We performed a necropsy in an Indian rhinoceros, recapitulating Owen's dissection and display what appear to be the initial identification of the recurrent laryngeal nerve in situ and the anatomy and histology of the largest rhinoceros parathyroid glands yet identified. MATERIALS AND METHODS: Patrick T. Rhino, a 41-year-old Indian rhinoceros was born in 1974. His early years were unremarkable. In 2006, he was donated to White Oak Conservation in Yulee, Florida, where he bred and sustained minor injuries. In his geriatric years, he developed a cataract and degenerative joint disease (DJD). At age 41, he developed progressive ataxia and lameness and was euthanized to minimize suffering when he was unable to stand. ROS, FH, SH and medication history were unremarkable. Physical exam was age and species appropriate. Pre-mortem serum demonstrated: creat 1.8 mg/dL (0.8-2.1), calcium 10.6 mg/dL (9.7-13.1), phos 3.8 mg/dL (2.5-6.7), alk phos 69 U/L (26-158) and intact PTH 44.1 pg/mL (rhinoceros reference range: unknown). Necropsy revealed intervertebral DJD with thoracic spondylosis, which combined with osteoporosis, resulted in thoracic myelopathy and ataxia. The neck block was sent in formalin to the Yale University School of Medicine. RESULTS: Detailed dissection was performed under loupe magnification. Presumed structures were photographed in situ and biopsied. The thyroid was identified deep to the strap muscles, received its blood supply from the inferior and superior thyroid arteries and was blue in color. The right recurrent laryngeal nerve, identified and photographed in situ for the first time in the rhinoceros, was deep to the inferior thyroid artery and was traced throughout its cervical course. Single parathyroid glands identified on the lateral thyroid lobes received their blood supply from the inferior thyroid arteries and were confirmed histologically. They appear to be the largest parathyroids yet identified in the rhinoceros with estimated weights of 6,280 and 11,000 mg, respectively. Although the etiology of the parathyroid gland enlargement is unknown, the specimen has been preserved recapitulating the dissection performed by Sir Richard Owen. CONCLUSION: The parathyroids, thyroid and recurrent laryngeal nerve were identified in an Indian rhinoceros. This appears to be the first display of the rhinoceros recurrent laryngeal nerve in situ, and the parathyroid glands are the largest yet identified in the rhinoceros.


Assuntos
Glândulas Paratireoides/anatomia & histologia , Perissodáctilos/anatomia & histologia , Nervo Laríngeo Recorrente/anatomia & histologia , Glândula Tireoide/anatomia & histologia , Animais , Autopsia , Biópsia , Dissecação , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...