Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Clin Chim Acta ; 522: 152-157, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419462

RESUMO

DNA promoter methylation is an early event in tumorigenesis and holds promise as a valuable marker in ovarian cancer (OC). It can be measured using circulating tumor specific DNA (ctDNA) isolated from the bloodstream. Sensitivity, however, is a limiting factor of its diagnostic feasibility in OC. DNA methylation analyses are based on bisulfite conversion, resulting in two DNA strands that are no longer complementary. The current standard strategy would then target only one of the double stranded DNA strands, but the potential to increase the sensitivity by targeting both DNA strands is available. In this study, we aimed at evaluating the diagnostic potential of methylated HOXA9 ctDNA in OC by targeting both the DNA sense and antisense strand. Methylated HOXA9 was detected in the plasma of 47/79 (59.5%) patients with newly diagnosed OC using sense-antisense droplet digital PCR. Simultaneous sense-antisense measurement increased the sensitivity by 14.6% (51.9% to 59.5%) as compared to antisense only. In patients with FIGO stage I-II disease the sensitivity was increased by 25%. In conclusion, simultaneous measurement targeting both DNA strands can increase the sensitivity and the analytical approach appears valuable in the diagnostic setting of OC.


Assuntos
DNA Tumoral Circulante , Neoplasias Ovarianas , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário , Metilação de DNA , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas
3.
Anal Chem ; 89(3): 1724-1733, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27935690

RESUMO

This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA/química , DNA/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...