Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pediatr Orthop ; 44(1): e61-e68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867374

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, neurodegenerative disorder that manifests with progressive loss of ambulation and refractory dystonia, especially in the early-onset classic form. This leads to osteopenia and stress on long bones, which pose an increased risk of atraumatic femur fractures. The purpose of this study is to describe the unique challenges in managing femur fractures in PKAN and the effect of disease manifestations on surgical outcomes. METHODS: A retrospective case review was conducted on 5 patients (ages 10 to 20 y) with PKAN with a femur fracture requiring surgical intervention. Data regarding initial presentation, surgical treatment, complications, and outcomes were obtained. RESULTS: All patients were non-ambulatory, with 4 of 5 patients sustaining an atraumatic femur fracture in the setting of dystonia episode. One patient had an additional contralateral acetabular fracture. Postoperatively, 4 of the 5 patients sustained orthopaedic complications requiring surgical revision, with 3 of these secondary to dystonia. Overall, 4 required prolonged hospitalization in the setting of refractory dystonia. CONCLUSION: Femur fractures in PKAN present distinct challenges for successful outcomes. A rigid intramedullary rod with proximal and distal interlocking screws is most protective against surgical complications associated with refractory dystonia occurring during the postoperative period. Multidisciplinary planning for postoperative care is essential and may include aggressive sedation and pain management to decrease the risk of subsequent injuries or complications. LEVEL OF EVIDENCE: Level IV.


Assuntos
Distonia , Neurodegeneração Associada a Pantotenato-Quinase , Fraturas da Coluna Vertebral , Humanos , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Neurodegeneração Associada a Pantotenato-Quinase/terapia , Distonia/complicações , Distonia/terapia , Estudos Retrospectivos , Fêmur
2.
J Child Neurol ; 35(4): 259-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31823681

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration. METHODS: A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration. RESULTS: We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1). CONCLUSION: Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.


Assuntos
Maconha Medicinal/uso terapêutico , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Gastrostomia , Humanos , Masculino , Maconha Medicinal/administração & dosagem , Resultado do Tratamento
3.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31660701

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Assuntos
Coenzima A/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Genótipo , Camundongos , Panteteína/farmacologia , Panteteína/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
Mol Genet Genomic Med ; 7(7): e00736, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087512

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by pathogenic sequence variants in C19orf12. Autosomal recessive inheritance has been demonstrated. We present evidence of autosomal dominant MPAN and propose a mechanism to explain these cases. METHODS: Two large families with apparently dominant MPAN were investigated; additional singleton cases of MPAN were identified. Gene sequencing and multiplex ligation-dependent probe amplification were used to characterize the causative sequence variants in C19orf12. Post-mortem brain from affected subjects was examined. RESULTS: In two multi-generation non-consanguineous families, we identified different nonsense sequence variations in C19orf12 that segregate with the MPAN phenotype. Brain pathology was similar to that of autosomal recessive MPAN. We additionally identified a preponderance of cases with single heterozygous pathogenic sequence variants, including two with de novo changes. CONCLUSIONS: We present three lines of clinical evidence to demonstrate that MPAN can manifest as a result of only one pathogenic C19orf12 sequence variant. We propose that truncated C19orf12 proteins, resulting from nonsense variants in the final exon in our autosomal dominant cohort, impair function of the normal protein produced from the non-mutated allele via a dominant negative mechanism and cause loss of function. These findings impact the clinical diagnostic evaluation and counseling.


Assuntos
Distúrbios do Metabolismo do Ferro/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Distrofias Neuroaxonais/genética , Adulto , Encéfalo , Códon sem Sentido/genética , Estudos de Coortes , Família , Feminino , Genes Dominantes/genética , Heterozigoto , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Masculino , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Distrofias Neuroaxonais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...