Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(6)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128130

RESUMO

Objective.SH-SY5Y cells are valuable neuronalin vitromodels for studying patho-mechanisms and treatment targets in brain disorders due to their easy maintenance, rapid expansion, and low costs. However, the use of various degrees of differentiation hampers appreciation of results and may limit the translation of findings to neurons or the brain. Here, we studied the neurobiological signatures of SH-SY5Y cells in terms of morphology, expression of neuronal markers, and functionality at various degrees of differentiation, as well as their resistance to hypoxia. We compared these to neurons derived from human induced pluripotent stem cells (hiPSCs), a well-characterized neuronalin vitromodel.Approach.We cultured SH-SY5Y cells and neurons derived from hiPSCs on glass coverslips or micro-electrode arrays. We studied expression of mature neuronal markers, electrophysiological activity, and sensitivity to hypoxia at various degrees of differentiation (one day up to three weeks) in SH-SY5Y cells. We used hiPSC derived neurons as a reference.Main results.Undifferentiated and shortly differentiated SH-SY5Y cells lacked neuronal characteristics. Expression of neuronal markers and formation of synaptic puncta increased during differentiation. Longer differentiation was associated with lower resistance to hypoxia. At three weeks of differentiation, MAP2 expression and vulnerability to hypoxia were similar to hiPSC-derived neurons, while the number of synaptic puncta and detected events were significantly lower. Our results show that at least three weeks of differentiation are necessary to obtain neurobiological signatures that are comparable to those of hiPSC-derived neurons, as well as similar sensitivities to metabolic stress. Significance.This indicates that extended differentiation protocols should be used to study neuronal characteristics and to model brain disorders with SH-SY5Y cells. We provided insights that may offer the basis for the utilization of SH-SY5Y cells as a more relevant neuronal model in the study of brain disorders.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Hipóxia
2.
J Neural Eng ; 18(6)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34844234

RESUMO

Objective.In this work we adapted a protocol for the fast generation of human neurons to build 3D neuronal networks with controlled structure and cell composition suitable for systematic electrophysiological investigations.Approach.We used biocompatible chitosan microbeads as scaffold to build 3D networks and to ensure nutrients-medium exchange from the core of the structure to the external environment. We used excitatory neurons derived from human-induced pluripotent stem cells (hiPSCs) co-cultured with astrocytes. By adapting the well-established NgN2 differentiation protocol, we obtained 3D engineered networks with good control over cell density, volume and cell composition. We coupled the 3D neuronal networks to 60-channel micro electrode arrays (MEAs) to monitor and characterize their electrophysiological development. In parallel, we generated two-dimensional neuronal networks cultured on chitosan to compare the results of the two models.Main results.We sustained samples until 60 din vitro(DIV) and 3D cultures were healthy and functional. From the structural point of view, the hiPSC derived neurons were able to adhere to chitosan microbeads and to form a stable 3D assembly thanks to the connections among cells. From a functional point of view, neuronal networks showed spontaneous activity after a couple of weeks.Significance.We presented a particular method to generate 3D engineered cultures for the first time with human-derived neurons coupled to MEAs, overcoming some of the limitations related to 2D and 3D neuronal networks and thus increasing the therapeutic target potential of these models for biomedical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Astrócitos , Diferenciação Celular , Células Cultivadas , Eletrodos , Fenômenos Eletrofisiológicos , Humanos , Microeletrodos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...