Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thermochim Acta ; 527(1): 148-157, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28018008

RESUMO

Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA , and enthalpy changes, ΔHA . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.

2.
J Vis Exp ; (50)2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21505408

RESUMO

Isothermal titration calorimetry (ITC) is commonly used to determine the thermodynamic parameters associated with the binding of a ligand to a host macromolecule. ITC has some advantages over common spectroscopic approaches for studying host/ligand interactions. For example, the heat released or absorbed when the two components interact is directly measured and does not require any exogenous reporters. Thus the binding enthalpy and the association constant (Ka) are directly obtained from ITC data, and can be used to compute the entropic contribution. Moreover, the shape of the isotherm is dependent on the c-value and the mechanistic model involved. The c-value is defined as c = n[P]tKa, where [P]t is the protein concentration, and n is the number of ligand binding sites within the host. In many cases, multiple binding sites for a given ligand are non-equivalent and ITC allows the characterization of the thermodynamic binding parameters for each individual binding site. This however requires that the correct binding model be used. This choice can be problematic if different models can fit the same experimental data. We have previously shown that this problem can be circumvented by performing experiments at several c-values. The multiple isotherms obtained at different c-values are fit simultaneously to separate models. The correct model is next identified based on the goodness of fit across the entire variable-c dataset. This process is applied here to the aminoglycoside resistance-causing enzyme aminoglycoside N-6'-acetyltransferase-Ii (AAC(6')-Ii). Although our methodology is applicable to any system, the necessity of this strategy is better demonstrated with a macromolecule-ligand system showing allostery or cooperativity, and when different binding models provide essentially identical fits to the same data. To our knowledge, there are no such systems commercially available. AAC(6')-Ii, is a homo-dimer containing two active sites, showing cooperativity between the two subunits. However ITC data obtained at a single c-value can be fit equally well to at least two different models a two-sets-of-sites independent model and a two-site sequential (cooperative) model. Through varying the c-value as explained above, it was established that the correct binding model for AAC(6')-Ii is a two-site sequential binding model. Herein, we describe the steps that must be taken when performing ITC experiments in order to obtain datasets suitable for variable-c analyses.


Assuntos
Calorimetria/métodos , Substâncias Macromoleculares/química , Acetiltransferases/química , Acetiltransferases/metabolismo , Domínio Catalítico , Ligantes , Substâncias Macromoleculares/metabolismo , Termodinâmica
3.
Nat Struct Mol Biol ; 18(3): 288-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278754

RESUMO

Allostery has been studied for many decades, yet it remains challenging to determine experimentally how it occurs at a molecular level. We have developed an approach combining isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy to quantify allostery in terms of protein thermodynamics, structure and dynamics. This strategy was applied to study the interaction between aminoglycoside N-(6')-acetyltransferase-Ii and one of its substrates, acetyl coenzyme A. It was found that homotropic allostery between the two active sites of the homodimeric enzyme is modulated by opposing mechanisms. One follows a classical Koshland-Némethy-Filmer (KNF) paradigm, whereas the other follows a recently proposed mechanism in which partial unfolding of the subunits is coupled to ligand binding. Competition between folding, binding and conformational changes represents a new way to govern energetic communication between binding sites.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Enterococcus faecium/enzimologia , Acetiltransferases/química , Regulação Alostérica , Calorimetria , Dicroísmo Circular , Enterococcus faecium/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...