Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Comput Model Dyn Syst ; 24(6): 661-687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498392

RESUMO

The underlying mechanisms for how maternal perinatal obesity and intrauterine environment influence fetal development are not well understood and thus require further understanding. In this paper, energy balance concepts are used to develop a comprehensive dynamical systems model for fetal growth that illustrates how maternal factors (energy intake and physical activity) influence fetal weight and related components (fat mass, fat-free mass, and placental volume) over time. The model is estimated from intensive measurements of fetal weight and placental volume obtained as part of Healthy Mom Zone (HMZ), a novel intervention for managing gestational weight gain in obese/overweight women. The overall result of the modeling procedure is a parsimonious system of equations that reliably predicts fetal weight gain and birth weight based on a sensible number of assessments. This model can inform clinical care recommendations as well as how adaptive interventions, such as HMZ, can influence fetal growth and birth outcomes.

2.
J Med Internet Res ; 20(6): e214, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954725

RESUMO

BACKGROUND: Adaptive behavioral interventions are individualized interventions that vary support based on a person's evolving needs. Digital technologies enable these adaptive interventions to function at scale. Adaptive interventions show great promise for producing better results compared with static interventions related to health outcomes. Our central thesis is that adaptive interventions are more likely to succeed at helping individuals meet and maintain behavioral targets if its elements can be iteratively improved via data-driven testing (ie, optimization). Control systems engineering is a discipline focused on decision making in systems that change over time and has a wealth of methods that could be useful for optimizing adaptive interventions. OBJECTIVE: The purpose of this paper was to provide an introductory tutorial on when and what to do when using control systems engineering for designing and optimizing adaptive mobile health (mHealth) behavioral interventions. OVERVIEW: We start with a review of the need for optimization, building on the multiphase optimization strategy (MOST). We then provide an overview of control systems engineering, followed by attributes of problems that are well matched to control engineering. Key steps in the development and optimization of an adaptive intervention from a control engineering perspective are then summarized, with a focus on why, what, and when to do subtasks in each step. IMPLICATIONS: Control engineering offers exciting opportunities for optimizing individualization and adaptation elements of adaptive interventions. Arguably, the time is now for control systems engineers and behavioral and health scientists to partner to advance interventions that can be individualized, adaptive, and scalable. This tutorial should aid in creating the bridge between these communities.


Assuntos
Terapia Comportamental/métodos , Engenharia Biomédica/métodos , Telemedicina/métodos , Humanos
3.
J Biomed Inform ; 79: 82-97, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29409750

RESUMO

BACKGROUND: Control systems engineering methods, particularly, system identification (system ID), offer an idiographic (i.e., person-specific) approach to develop dynamic models of physical activity (PA) that can be used to personalize interventions in a systematic, scalable way. The purpose of this work is to: (1) apply system ID to develop individual dynamical models of PA (steps/day measured using Fitbit Zip) in the context of a goal setting and positive reinforcement intervention informed by Social Cognitive Theory; and (2) compare insights on potential tailoring variables (i.e., predictors expected to influence steps and thus moderate the suggested step goal and points for goal achievement) selected using the idiographic models to those selected via a nomothetic (i.e., aggregated across individuals) approach. METHOD: A personalized goal setting and positive reinforcement intervention was deployed for 14 weeks. Baseline PA measured in weeks 1-2 was used to inform personalized daily step goals delivered in weeks 3-14. Goals and expected reward points (granted upon goal achievement) were pseudo-randomly assigned using techniques from system ID, with goals ranging from their baseline median steps/day up to 2.5× baseline median steps/day, and points ranging from 100 to 500 (i.e., $0.20-$1.00). Participants completed a series of daily self-report measures. Auto Regressive with eXogenous Input (ARX) modeling and multilevel modeling (MLM) were used as the idiographic and nomothetic approaches, respectively. RESULTS: Participants (N = 20, mean age = 47.25 ±â€¯6.16 years, 90% female) were insufficiently active, overweight (mean BMI = 33.79 ±â€¯6.82 kg/m2) adults. Results from ARX modeling suggest that individuals differ in the factors (e.g., perceived stress, weekday/weekend) that influence their observed steps/day. In contrast, the nomothetic model from MLM suggested that goals and weekday/weekend were the key variables that were predictive of steps. Assuming the ARX models are more personalized, the obtained nomothetic model would have led to the identification of the same predictors for 5 of the 20 participants, suggesting a mismatch of plausible tailoring variables to use for 75% of the sample. CONCLUSION: The idiographic approach revealed person-specific predictors beyond traditional MLM analyses and unpacked the inherent complexity of PA; namely that people are different and context matters. System ID provides a feasible approach to develop personalized dynamical models of PA and inform person-specific tailoring variable selection for use in adaptive behavioral interventions.


Assuntos
Exercício Físico , Comportamentos Relacionados com a Saúde , Monitorização Ambulatorial/instrumentação , Caminhada , Adulto , Idoso , Telefone Celular , Cognição , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Monitorização Ambulatorial/métodos , Motivação , Distribuição Normal , Cooperação do Paciente , Reprodutibilidade dos Testes , Software
4.
J Behav Med ; 41(1): 74-86, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28918547

RESUMO

Adaptive interventions are an emerging class of behavioral interventions that allow for individualized tailoring of intervention components over time to a person's evolving needs. The purpose of this study was to evaluate an adaptive step goal + reward intervention, grounded in Social Cognitive Theory delivered via a smartphone application (Just Walk), using a mixed modeling approach. Participants (N = 20) were overweight (mean BMI = 33.8 ± 6.82 kg/m2), sedentary adults (90% female) interested in participating in a 14-week walking intervention. All participants received a Fitbit Zip that automatically synced with Just Walk to track daily steps. Step goals and expected points were delivered through the app every morning and were designed using a pseudo-random multisine algorithm that was a function of each participant's median baseline steps. Self-report measures were also collected each morning and evening via daily surveys administered through the app. The linear mixed effects model showed that, on average, participants significantly increased their daily steps by 2650 (t = 8.25, p < 0.01) from baseline to intervention completion. A non-linear model with a quadratic time variable indicated an inflection point for increasing steps near the midpoint of the intervention and this effect was significant (t2 = -247, t = -5.01, p < 0.001). An adaptive step goal + rewards intervention using a smartphone app appears to be a feasible approach for increasing walking behavior in overweight adults. App satisfaction was high and participants enjoyed receiving variable goals each day. Future mHealth studies should consider the use of adaptive step goals + rewards in conjunction with other intervention components for increasing physical activity.


Assuntos
Terapia Comportamental , Objetivos , Sobrepeso/psicologia , Sobrepeso/terapia , Recompensa , Smartphone , Caminhada/psicologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Motivação , Autorrelato , Teoria Social , Telemedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...