Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992433

RESUMO

The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar "Western" diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function. We hypothesized that obesity could also result in repressed gut adaptive immunity. Using small intestinal intraepithelial lymphocytes (IEL) as a readout, we found that in non-inflammatory bowel disease (IBD) subjects, high body mass index correlated with reduced IEL density. We recapitulated this in wild type (WT) mice fed with WD. A 4-week WD consumption was able to reduce IEL but not splenic, blood, or bone marrow lymphocytes, and the effect was reversible after another 2 weeks of standard diet (SD) washout. Importantly, WD-associated IEL reduction was not dependent on the presence of gut microbiota, as WD-fed germ-free mice also showed IEL reduction. We further found that WD-mediated Farnesoid X Receptor (FXR) activation in the gut triggered IEL reduction, and this was partially mediated by intestinal phagocytes. Activated FXR signaling stimulated phagocytes to secrete type I IFN, and inhibition of either FXR or type I IFN signaling within the phagocytes prevented WD-mediated IEL loss. Therefore, WD consumption represses both innate and adaptive immunity in the gut. These findings have significant clinical implications in the understanding of how diet modulates mucosal immunity.

2.
Sci Transl Med ; 16(728): eabq4145, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170788

RESUMO

Environmental enteric dysfunction (EED) is a diffuse small bowel disorder associated with poor growth, inadequate responses to oral vaccines, and nutrient malabsorption in millions of children worldwide. We identify loss of the small intestinal Paneth and goblet cells that are critical for innate immunity, reduced villous height, increased bile acids, and dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis signaling as potential mechanisms underlying EED and which also correlated with diminished length-for-age z score. Isocaloric low-protein diet (LPD) consumption in mice recapitulated EED histopathology and transcriptomic changes in a microbiota-independent manner, as well as increases in serum and fecal bile acids. Children with refractory EED harbor single-nucleotide polymorphisms in key enzymes involved in NAD+ synthesis. In mice, deletion of Nampt, the gene encoding the rate-limiting enzyme in the NAD+ salvage pathway, from intestinal epithelium also reduced Paneth cell function, a deficiency that was further aggravated by LPD. Separate supplementation with NAD+ precursors or bile acid sequestrant partially restored LPD-associated Paneth cell defects and, when combined, fully restored all histopathology defects in LPD-fed mice. Therapeutic regimens that increase protein and NAD+ contents while reducing excessive bile acids may benefit children with refractory EED.


Assuntos
Ácidos e Sais Biliares , NAD , Humanos , Criança , Camundongos , Animais , NAD/genética , NAD/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...