Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 218: 62-68, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301508

RESUMO

The mangrove oyster Crassostrea rhizophorae is identified as a potentially valuable species for tropical aquaculture, however, information on the physiological mechanisms of reproduction under laboratory conditions for this species is limited. This study investigated the effects of salinity at different concentrations (15, 20, 25, 30, 35, and 40 g/L) on the induction of germinal vesicle breakdown (GVBD) of oocytes obtained through stripping, the release of polar bodies (PB1 and PB2), and the larval development of the mangrove oyster. The results revealed a relationship between salinity and the percentage of GVBD, with the most effective range being 30-40 g/L within the hydration time frame between 70 and 120 min. The release of 50 % of PB1 was detected within this salinity range, while for the release of 50 % of PB2, the saline treatments of 35 and 40 g/L showed the best results. Overall, the salinity range of 30-40 g/L is suggested as the most suitable of polyploidy induction methodologies through the retention of PB1 or PB2. Regarding larval hatching, while salinities between 25 and 40 g/L presented similar percentages, at 15 g/L no hatching was observed. This study demonstrated that salinity is a key factor in early pre- and post-fertilization stages for the successful reproduction of mangrove oyster in hatcheries and that the percentages of oocyte maturation and artificial fertilization can be optimized by adjusting salinity.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Salinidade , Aquicultura , Larva , Fertilização
2.
Rev Bras Parasitol Vet ; 29(3): e003720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32667502

RESUMO

The aim of this study was to report on detection of Toxoplasma gondii DNA in oysters (Crassostrea sp.) in the state of Maranhão. To conduct this study, 200 farmed oysters were acquired in the municipality of Raposa and 100 in Paço do Lumiar; and a further 100 oysters were taken from the natural stock in the municipality of Primeira Cruz. This total of 400 specimens sampled was divided into 80 pools composed of five animals each. The gills and visceral mass of each oyster were removed for DNA extraction (per pool of oysters), using a commercial kit. The nested PCR technique (with the primer SAG-1) was then used to investigate any presence of protozoa. This molecular technique demonstrated the presence of DNA of T. gondii in 2.5% of the pools of oysters (n = 2/80): these oysters were exclusively from farms. The results from this study allow the conclusion that oysters of the genus Crassostrea that are farmed in the state of Maranhão are capable of filtering oocysts of T. gondii and maintaining them in their tissues. They are therefore potential sources of contamination for humans and other animals.


Assuntos
Crassostrea , Toxoplasma , Animais , Aquicultura , Brasil , Crassostrea/parasitologia , DNA de Protozoário/genética , Oocistos/isolamento & purificação , Reação em Cadeia da Polimerase , Toxoplasma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...