Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 70: 103022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309257

RESUMO

DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.


Assuntos
Metilação de DNA , Fumar , Humanos , Fumar/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , DNA , Hábitos
2.
Forensic Sci Int Genet ; 67: 102936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783021

RESUMO

Age prediction from DNA has been a topic of interest in recent years due to the promising results obtained when using epigenetic markers. Since DNA methylation gradually changes across the individual's lifetime, prediction models have been developed accordingly for age estimation. The tissue-dependence for this biomarker usually necessitates the development of tissue-specific age prediction models, in this way, multiple models for age inference have been constructed for the most commonly encountered forensic tissues (blood, oral mucosa, semen). The analysis of skeletal remains has also been attempted and prediction models for bone have now been reported. Recently, the VISAGE Enhanced Tool was developed for the simultaneous DNA methylation analysis of 8 age-correlated loci using targeted high-throughput sequencing. It has been shown that this method is compatible with epigenetic age estimation models for blood, buccal cells, and bone. Since when dealing with decomposed cadavers or postmortem samples, cartilage samples are also an important biological source, an age prediction model for cartilage has been generated in the present study based on methylation data collected using the VISAGE Enhanced Tool. In this way, we have developed a forensic cartilage age prediction model using a training set composed of 109 samples (19-74 age range) based on DNA methylation levels from three CpGs in FHL2, TRIM59 and KLF14, using multivariate quantile regression which provides a mean absolute error (MAE) of ± 4.41 years. An independent testing set composed of 72 samples (19-75 age range) was also analyzed and provided an MAE of ± 4.26 years. In addition, we demonstrate that the 8 VISAGE markers, comprising EDARADD, TRIM59, ELOVL2, MIR29B2CHG, PDE4C, ASPA, FHL2 and KLF14, can be used as tissue prediction markers which provide reliable blood, buccal cells, bone, and cartilage differentiation using a developed multinomial logistic regression model. A training set composed of 392 samples (n = 87 blood, n = 86 buccal cells, n = 110 bone and n = 109 cartilage) was used for building the model (correct classifications: 98.72%, sensitivity: 0.988, specificity: 0.996) and validation was performed using a testing set composed of 192 samples (n = 38 blood, n = 36 buccal cells, n = 46 bone and n = 72 cartilage) showing similar predictive success to the training set (correct classifications: 97.4%, sensitivity: 0.968, specificity: 0.991). By developing both a new cartilage age model and a tissue differentiation model, our study significantly expands the use of the VISAGE Enhanced Tool while increasing the amount of DNA methylation-based information obtained from a single sample and a single forensic laboratory analysis. Both models have been placed in the open-access Snipper forensic classification website.


Assuntos
Envelhecimento , Cartilagem Costal , Humanos , Pré-Escolar , Envelhecimento/genética , Mucosa Bucal , Ilhas de CpG , Marcadores Genéticos , Metilação de DNA , Genética Forense/métodos , Epigênese Genética , Proteínas com Motivo Tripartido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Forensic Sci Int Genet ; 67: 102937, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37812882

RESUMO

We have adapted an established Ampliseq microhaplotype panel for nanopore sequencing with the Oxford Nanopore Technologies (ONT) system, as a cost-effective and highly scalable solution for forensic genetics applications. For this purpose, we designed a protocol combining direct PCR amplification from unextracted DNA with ONT library construction and sequencing using the MinION device and workflow. The analysis of reference samples at input amounts of 5-10 ng of DNA demonstrates stable coverage patterns, allele balance, and strand bias, reaching profile completeness and concordance rates of ∼95%. Similar levels were achieved when using direct-PCR from blood, buccal and semen swabs. Dilution series results indicate sensitivity is maintained down to 250 pg of input DNA, and informative profiles are produced down to 62.5 pg. Finally, we demonstrated the forensic utility of the nanopore workflow by analyzing two third degree pedigrees that showed low likelihood ratio values after the analysis of an extended panel of 38 STRs, achieving likelihood ratios 2-3 orders of magnitude higher when testing with the MinION-based haplotype data.


Assuntos
Sequenciamento por Nanoporos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , DNA/análise , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência de DNA/métodos
4.
Forensic Sci Int Genet ; 64: 102853, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917866

RESUMO

The VISAGE Enhanced Tool for Appearance and Ancestry (ET) has been designed to combine markers for the prediction of bio-geographical ancestry plus a range of externally visible characteristics into a single massively parallel sequencing (MPS) assay. We describe the development of the ancestry panel markers used in ET, and the enhanced analyses they provide compared to previous MPS-based forensic ancestry assays. As well as established autosomal single nucleotide polymorphisms (SNPs) that differentiate sub-Saharan African, European, East Asian, South Asian, Native American, and Oceanian populations, ET includes autosomal SNPs able to efficiently differentiate populations from Middle East regions. The ability of the ET autosomal ancestry SNPs to distinguish Middle East populations from other continentally defined population groups is such that characteristic patterns for this region can be discerned in genetic cluster analysis using STRUCTURE. Joint cluster membership estimates showing individual co-ancestry that signals North African or East African origins were detected, or cluster patterns were seen that indicate origins from central and Eastern regions of the Middle East. In addition to an augmented panel of autosomal SNPs, ET includes panels of 85 Y-SNPs, 16 X-SNPs and 21 autosomal Microhaplotypes. The Y- and X-SNPs provide a distinct method for obtaining extra detail about co-ancestry patterns identified in males with admixed backgrounds. This study used the 1000 Genomes admixed African and admixed American sample sets to fully explore these enhancements to the analysis of individual co-ancestry. Samples from urban and rural Brazil with contrasting distributions of African, European, and Native American co-ancestry were also studied to gauge the efficiency of combining Y- and X-SNP data for this purpose. The small panel of Microhaplotypes incorporated in ET were selected because they showed the highest levels of haplotype diversity amongst the seven population groups we sought to differentiate. Microhaplotype data was not formally combined with single-site SNP genotypes to analyse ancestry. However, the haplotype sequence reads obtained with ET from these loci creates an effective system for de-convoluting two-contributor mixed DNA. We made simple mixture experiments to demonstrate that when the contributors have different ancestries and the mixture ratios are imbalanced (i.e., not 1:1 mixtures) the ET Microhaplotype panel is an informative system to infer ancestry when this differs between the contributors.


Assuntos
Impressões Digitais de DNA , DNA , Humanos , Masculino , Genótipo , Haplótipos , Oriente Médio , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala , Genética Populacional , Frequência do Gene
5.
Forensic Sci Int Genet ; 61: 102779, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182793

RESUMO

Responding to the growing scientific and practical interest in forensic DNA phenotyping, the VISible Attributes through GEnomics (VISAGE) Consortium was founded in 2017 with the main goal of developing and validating new and reliable molecular and statistical tools to predict appearance, ancestry and age from DNA. Here, we describe the development and inter-laboratory evaluation and validation of the VISAGE Enhanced Tool for Appearance and Ancestry inference from DNA. The VISAGE Enhanced Tool for Appearance and Ancestry is the first forensic-driven genetic laboratory tool that comprises well-established markers for eye, hair and skin color with more recently discovered DNA markers for eyebrow color, freckling, hair shape and male pattern baldness and bio-geographic ancestry informative DNA markers. The bio-geographic ancestry markers include autosomal SNPs (bi- and tri-allelic SNPs), X-SNPs, Y-SNPs and autosomal Microhaplotypes. In total, primers targeting 524 SNPs (representing a 97.6% assay conversion rate) were successfully designed using AmpliSeq into a single primer pool (i.e., one multiplex assay) and sequenced with the Ion S5. In a collaborative framework, five VISAGE laboratories tested the VISAGE Enhanced Tool for Appearance and Ancestry on reproducibility, sensitivity, genotyping concordance, mixtures, species specificity and performance in relevant forensic conditions, including inhibitor-spiked, mock casework and artificially degraded samples. Based on our results, the VISAGE Enhanced Tool for Appearance and Ancestry is a robust, reproducible, and - for the large SNP number - fairly sensitive MPS assay with high concordance rates. With the VISAGE Enhanced Tool for Appearance and Ancestry introduced here, the VISAGE Consortium delivers the first single DNA-test for combined appearance prediction based on seven traits together with bio-geographic ancestry inference based on major continental regions for separated bi-parental and paternal ancestry, which represents the most comprehensive validated laboratory tool currently available for Forensic DNA Phenotyping.


Assuntos
DNA , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Marcadores Genéticos , Reprodutibilidade dos Testes , DNA/genética , Fenótipo
6.
Forensic Sci Int Genet ; 61: 102780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174251

RESUMO

To compile a new South Asian-informative panel of forensic ancestry SNPs, we changed the strategy for selecting the most powerful markers for this purpose by targeting polymorphisms with near absolute specificity - when the South Asian-informative allele identified is absent from all other populations or present at frequencies below 0.001 (one in a thousand). More than 120 candidate SNPs were identified from 1000 Genomes datasets satisfying an allele frequency screen of ≥ 0.1 (10 % or more) allele frequency in South Asians, and ≤ 0.001 (0.1 % or less) in African, East Asian, and European populations. From the candidate pool of markers, a final panel of 36 SNPs, widely distributed across most autosomes, were selected that had allele frequencies in the five 1000 Genomes South Asian populations ranging from 0.4 to 0.15. Slightly lower average allele frequencies, but consistent patterns of informativeness were observed in gnomAD South Asian datasets used to validate the 1000 Genomes variant annotations. We named the panel of 36 South Asian-specific SNPs Eurasiaplex-2, and the informativeness of the panel was evaluated by compiling worldwide population data from 4097 samples in four genome variation databases that largely complement the global sampling of 1000 Genomes. Consistent patterns of allele frequency distribution, which were specific to South Asia, were observed in all populations in, or closely sited to, the Indian sub-continent. Pakistani populations from the HGDP-CEPH panel had markedly lower allele frequencies, highlighting the need to develop a statistical system to evaluate the ancestry inference value of counting the number of population-specific alleles present in an individual.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Humanos , Frequência do Gene , Povo Asiático/genética , Alelos
7.
Forensic Sci Int Genet ; 61: 102770, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057238

RESUMO

Age estimation based on epigenetic markers is a DNA intelligence tool with the potential to provide relevant information for criminal investigations, as well as to improve the inference of age-dependent physical characteristics such as male pattern baldness or hair color. Age prediction models have been developed based on different tissues, including saliva and buccal cells, which show different methylation patterns as they are composed of different cell populations. On many occasions in a criminal investigation, the origin of a sample or the proportion of tissues is not known with certainty, for example the provenance of cigarette butts, so use of combined models can provide lower prediction errors. In the present study, two tissue-specific and seven age-correlated CpG sites were selected from publicly available data from the Illumina HumanMethylation 450 BeadChip and bibliographic searches, to help build a tissue-dependent, and an age-prediction model, respectively. For the development of both models, a total of 184 samples (N = 91 saliva and N = 93 buccal cells) ranging from 21 to 86 years old were used. Validation of the models was performed using either k-fold cross-validation and an additional set of 184 samples (N = 93 saliva and N = 91 buccal cells, 21-86 years old). The tissue prediction model was developed using two CpG sites (HUNK and RUNX1) based on logistic regression that produced a correct classification rate for saliva and buccal swab samples of 88.59 % for the training set, and 83.69 % for the testing set. Despite these high success rates, a combined age prediction model was developed covering both saliva and buccal cells, using seven CpG sites (cg10501210, LHFPL4, ELOVL2, PDE4C, HOXC4, OTUD7A and EDARADD) based on multivariate quantile regression giving a median absolute error (MAE): ± 3.54 years and a correct classification rate ( %CP±PI) of 76.08 % for the training set, and an MAE of ± 3.66 years and a %CP±PI of 71.19 % for the testing set. The addition of tissue-of origin as a co-variate to the model was assessed, but no improvement was detected in age predictions. Finally, considering the limitations usually faced by forensic DNA analyses, the robustness of the model and the minimum recommended amount of input DNA for bisulfite conversion were evaluated, considering up to 10 ng of genomic DNA for reproducible results. The final multivariate quantile regression age predictor based on the models we developed has been placed in the open-access Snipper forensic classification website.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Genética Forense , Humanos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Genética Forense/métodos , Saliva , Metilação de DNA , Mucosa Bucal , Marcadores Genéticos , Envelhecimento/genética , DNA , Epigênese Genética
8.
Forensic Sci Int Genet ; 60: 102743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777225

RESUMO

Forensic age estimation is a DNA intelligence tool that forms an important part of Forensic DNA Phenotyping. Criminal cases with no suspects or with unsuccessful matches in searches on DNA databases; human identification analyses in mass disasters; anthropological studies or legal disputes; all benefit from age estimation to gain investigative leads. Several age prediction models have been developed to date based on DNA methylation. Although different DNA methylation technologies as well as diverse statistical methods have been proposed, most of them are based on blood samples and mainly restricted to adult age ranges. In the current study, we present an extended age prediction model based on 895 evenly distributed Spanish DNA blood samples from 2 to 104 years old. DNA methylation levels were detected using Agena Bioscience EpiTYPER® technology for a total of seven CpG sites located at seven genomic regions: ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, MIR29B2CHG and chr16:85395429 (GRCh38). The accuracy of the age prediction system was tested by comparing three statistical methods: quantile regression (QR), quantile regression neural network (QRNN) and quantile regression support vector machine (QRSVM). The most accurate predictions were obtained when using QRNN or QRSVM (mean absolute prediction error, MAE of ± 3.36 and ± 3.41, respectively). Validation of the models with an independent Spanish testing set (N = 152) provided similar accuracies for both methods (MAE: ± 3.32 and ± 3.45, respectively). The main advantage of using quantile regression statistical tools lies in obtaining age-dependent prediction intervals, fitting the error to the estimated age. An additional analysis of dimensionality reduction shows a direct correlation of increased error and a reduction of correct classifications as the training sample size is reduced. Results indicated that a minimum sample size of six samples per year-of-age covered by the training set is recommended to efficiently capture the most inter-individual variability..


Assuntos
Envelhecimento , Genética Forense , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Criança , Pré-Escolar , Ilhas de CpG/genética , DNA , Metilação de DNA , Epigênese Genética , Genética Forense/métodos , Humanos , Pessoa de Meia-Idade , Adulto Jovem
9.
Sci Rep ; 11(1): 21040, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702940

RESUMO

Introduction of new methods requires meticulous evaluation before they can be applied to forensic genetic case work. Here, a custom QIAseq Targeted DNA panel with 164 ancestry informative markers was assessed using the MiSeq sequencing platform. Concordance, sensitivity, and the capability for analysis of mixtures were tested. The assay gave reproducible and nearly concordant results with an input of 10 and 2 ng DNA. Lower DNA input led to an increase in both locus and allele drop-outs, and a higher variation in heterozygote balance. Locus or allele drop-outs in the samples with less than 2 ng DNA input were not necessarily associated with the overall performance of a locus. Thus, the QIAseq assay will be difficult to implement in a forensic genetic setting where the sample material is often scarce and of poor quality. With equal or near equal mixture ratios, the mixture DNA profiles were easily identified by an increased number of imbalanced heterozygotes. For more skewed mixture ratios, the mixture DNA profiles were identified by an increased noise level. Lastly, individuals from Great Britain and the Middle East were investigated. The Middle Eastern individuals showed a greater affinity with South European populations compared to North European populations.


Assuntos
Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Marcadores Genéticos , Humanos
10.
Front Genet ; 11: 932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973877

RESUMO

Individual age estimation can be applied to criminal, legal, and anthropological investigations. DNA methylation has been established as the biomarker of choice for age prediction, since it was observed that specific CpG positions in the genome show systematic changes during an individual's lifetime, with progressive increases or decreases in methylation levels. Subsequently, several forensic age prediction models have been reported, providing average age prediction error ranges of ±3-4 years, using a broad spectrum of technologies and underlying statistical analyses. DNA methylation assessment is not categorical but quantitative. Therefore, the detection platform used plays a pivotal role, since quantitative and semi-quantitative technologies could potentially result in differences in detected DNA methylation levels. In the present study, we analyzed as a shared sample pool, 84 blood-based DNA controls ranging from 18 to 99 years old using four different technologies: EpiTYPER®, pyrosequencing, MiSeq, and SNaPshotTM. The DNA methylation levels detected for CpG sites from ELOVL2, FHL2, and MIR29B2 with each system were compared. A restricted three CpG-site age prediction model was rebuilt for each system, as well as for a combination of technologies, based on previous training datasets, and age predictions were calculated accordingly for all the samples detected with the previous technologies. While the DNA methylation patterns and subsequent age predictions from EpiTYPER®, pyrosequencing, and MiSeq systems are largely comparable for the CpG sites studied, SNaPshotTM gives bigger differences reflected in higher predictive errors. However, these differences can be reduced by applying a z-score data transformation.

11.
Forensic Sci Int Genet ; 48: 102344, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615397

RESUMO

DNA intelligence, and particularly the inference of biogeographical ancestry (BGA) is increasing in interest, and relevance within the forensic genetics community. The majority of current MPS-based forensic ancestry-informative assays focus on the differentiation of major global populations. The recently published MAPlex (Multiplex for the Asia Pacific) panel contains 144 SNPs and 20 microhaplotypes and aims to improve the differentiation of populations in the Asia Pacific region. This study reports the first forensic evaluation of the MAPlex panel using AmpliSeq technology and Ion S5 sequencing. This study reports on the overall performance of MAPlex including the assay's sequence coverage distribution and stability, baseline noise and description of problematic SNPs. Dilution series, artificially degraded and mixed DNA samples were also analysed to evaluate the sensitivity of the panel with challenging or compromised forensic samples. As the first panel to combine biallelic SNPs, multiple-allele SNPs and microhaplotypes, the MAPlex assay demonstrated an enhanced capacity for mixture detection, not easily performed with common binary SNPs. This performance evaluation indicates that MAPlex is a robust, stable and highly sensitive assay that is applicable to forensic casework for the prediction of BGA.


Assuntos
Povo Asiático/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Frequência do Gene , Genótipo , Haplótipos , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Forensic Sci Int Genet ; 44: 102200, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760353

RESUMO

We describe an ancestry-informative autosomal SNP multiplex designed to be a small-scale, flexible panel that can complement uniparental markers in assessing the American variability (i.e. pre-Colombian) found in contemporary indigenous American populations. This study centered on choosing SNPs with the specific characteristics of: 1) extreme allele frequency differences between indigenous Americans and the African, European and East Asian population groups that contribute to present-day population variation in the Americas; 2) high informativeness-for-assignment In values; and 3) well-spaced genomic distribution and chromosomal separation from existing small-scale forensic ancestry marker sets. The resulting capillary electrophoresis SNaPshot single base extension test was named: PIMA (Population Informative Multiplex for the Americas), comprising 26 autosomal SNPs, a single X-chromosome SNP plus the amelogenin sex marker adapted for SNaPshot. PIMA complements the established 34plex forensic ancestry panel to provide a powerful and simple tool for the analysis of American populations, including those with admixed histories, commonly encountered in America. Comparing the results obtained with the combined marker panels of PIMA and 34plex to SNP data from a much larger ancestry panel allowed us to gauge their relative efficiency. PIMA+34plex gives equivalent power to the 314-SNP 'LACE' genomic ancestry control panel, while requiring a much smaller genotyping effort. The ancestry profiles and genetic structure of 22 populations spread across the American continent were estimated using PIMA+34plex data, and those estimates were contrasted with information provided by uniparental markers (mtDNA and Y-chromosome loci) for a small set of admixed individuals from Venezuela. Our results indicate that an American genetic component is efficiently detected in contemporary American populations using a small set of ancestry informative SNPs, and these co-ancestry estimates are consistent with the known history and demography of the Americas. The small scale and high population differentiation power of PIMA, particularly when combined with 34plex, provides a practical and powerful tool for genetic studies of American populations as well as forensic DNA analyses.


Assuntos
Etnicidade/genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Amelogenina/genética , América , Cromossomos Humanos Y , DNA Mitocondrial , Eletroforese Capilar , Frequência do Gene , Marcadores Genéticos , Genótipo , Humanos , Reação em Cadeia da Polimerase Multiplex
14.
Forensic Sci Int Genet ; 42: 260-267, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404905

RESUMO

Inference of biogeographic origin is an important factor in clinical, population and forensic genetics. The information provided by AIMs (Ancestry Informative Markers) can allow the differentiation of major continental population groups, and several AIM panels have been developed for this purpose. However, from these major population groups, Eurasia covers a wide area between two continents that is difficult to differentiate genetically. These populations display a gradual genetic cline from West Europe to South Asia in terms of allele frequency distribution. Although differences have been reported between Europe and South Asia, Middle East populations continue to be a target of further investigations due to the lack of genetic variability, therefore hampering their genetic differentiation from neighboring populations. In the present study, a custom-built ancestry panel was developed to analyze North African and Middle Eastern populations, designated the 'NAME' panel. The NAME panel contains 111 SNPs that have patterns of allele frequency differentiation that can distinguish individuals originating in North Africa and the Middle East when combined with a previous set of 126 Global AIM-SNPs.


Assuntos
População Negra/genética , Genética Forense/métodos , Genética Populacional , África do Norte , Impressões Digitais de DNA , Frequência do Gene , Marcadores Genéticos , Técnicas de Genotipagem , Humanos , Oriente Médio , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
15.
Forensic Sci Int Genet ; 42: 213-226, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31377479

RESUMO

Current forensic ancestry-informative panels are limited in their ability to differentiate populations in the Asia-Pacific region. MAPlex (Multiplex for the Asia-Pacific), a massively parallel sequencing (MPS) assay, was developed to improve differentiation of East Asian, South Asian and Near Oceanian populations found in the extensive cross-continental Asian region that shows complex patterns of admixture at its margins. This study reports the development of MAPlex; the selection of SNPs in combination with microhaplotype markers; assay design considerations for reducing the lengths of microhaplotypes while preserving their ancestry-informativeness; adoption of new population-informative multiple-allele SNPs; compilation of South Asian-informative SNPs suitable for forensic AIMs panels; and the compilation of extensive reference and test population genotypes from online whole-genome-sequence data for MAPlex markers. STRUCTURE genetic clustering software was used to gauge the ability of MAPlex to differentiate a broad set of populations from South and East Asia, the West Pacific regions of Near Oceania, as well as the other globally distributed population groups. Preliminary assessment of MAPlex indicates enhanced South Asian differentiation with increased divergence between West Eurasian, South Asian and East Asian populations, compared to previous forensic SNP panels of comparable scale. In addition, MAPlex shows efficient differentiation of Middle Eastern individuals from Europeans. MAPlex is the first forensic AIM assay to combine binary and multiple-allele SNPs with microhaplotypes, adding the potential to detect and analyze mixed source forensic DNA.


Assuntos
Genética Populacional , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Ásia , Impressões Digitais de DNA , Frequência do Gene , Marcadores Genéticos , Humanos , Oriente Médio , Oceania , Análise de Sequência de DNA
16.
Forensic Sci Rev ; 29(2): 121-144, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28691915

RESUMO

Individual age estimation is a key factor in forensic science analysis that can provide very useful information applicable to criminal, legal, and anthropological investigations. Forensic age inference was initially based on morphological inspection or radiography and only later began to adopt molecular approaches. However, a lack of accuracy or technical problems hampered the introduction of these DNA-based methodologies in casework analysis. A turning point occurred when the epigenetic signature of DNA methylation was observed to gradually change during an individual´s lifespan. In the last four years, the number of publications reporting DNA methylation age-correlated changes has gradually risen and the forensic community now has a range of age methylation tests applicable to forensic casework. Most forensic age predictor models have been developed based on blood DNA samples, but additional tissues are now also being explored. This review assesses the most widely adopted genes harboring methylation sites, detection technologies, statistical age-predictive analyses, and potential causes of variation in age estimates. Despite the need for further work to improve predictive accuracy and establishing a broader range of tissues for which tests can analyze the most appropriate methylation sites, several forensic age predictors have now been reported that provide consistency in their prediction accuracies (predictive error of ±4 years); this makes them compelling tools with the potential to contribute key information to help guide criminal investigations.


Assuntos
Envelhecimento/genética , Metilação de DNA , Genética Forense/métodos , Acetiltransferases/genética , Amidoidrolases/genética , Ilhas de CpG/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Proteína de Domínio de Morte Associada a Edar/genética , Epigenômica , Elongases de Ácidos Graxos , Humanos , Integrina alfa2/genética , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética , Análise de Sequência de DNA , Sulfitos/química , Fatores de Transcrição/genética
17.
Forensic Sci Int Genet ; 24: 65-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27337627

RESUMO

Individual age estimation has the potential to provide key information that could enhance and extend DNA intelligence tools. Following predictive tests for externally visible characteristics developed in recent years, prediction of age could guide police investigations and improve the assessment of age-related phenotype expression patterns such as hair colour changes and early onset of male pattern baldness. DNA methylation at CpG positions has emerged as the most promising DNA tests to ascertain the individual age of the donor of a biological contact trace. Although different methodologies are available to detect DNA methylation, EpiTYPER technology (Agena Bioscience, formerly Sequenom) provides useful characteristics that can be applied as a discovery tool in localized regions of the genome. In our study, a total of twenty-two candidate genomic regions, selected from the assessment of publically available data from the Illumina HumanMethylation 450 BeadChip, had a total of 177 CpG sites with informative methylation patterns that were subsequently investigated in detail. From the methylation analyses made, a novel age prediction model based on a multivariate quantile regression analysis was built using the seven highest age-correlated loci of ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, C1orf132 and chr16:85395429. The detected methylation levels in these loci provide a median absolute age prediction error of ±3.07years and a percentage of prediction error relative to the age of 6.3%. We report the predictive performance of the developed model using cross validation of a carefully age-graded training set of 725 European individuals and a test set of 52 monozygotic twin pairs. The multivariate quantile regression age predictor, using the CpG sites selected in this study, has been placed in the open-access Snipper forensic classification website.


Assuntos
Envelhecimento/genética , Ilhas de CpG/genética , Metilação de DNA , Marcadores Genéticos , Software , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Loci Gênicos , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Análise Multivariada , Reação em Cadeia da Polimerase , Gêmeos Monozigóticos/genética , Adulto Jovem
18.
Int J Legal Med ; 130(1): 73-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26289413

RESUMO

The inference of biogeographical ancestry (BGA) can provide useful information for forensic investigators when there are no suspects to be compared with DNA collected at the crime scene or when no DNA database matches exist. Although public databases are increasing in size and population scope, there is a lack of information regarding genetic variation in Eurasian populations, especially in central regions such as the Middle East. Inhabitants of these regions show a high degree of genetic admixture, characterized by an allele frequency cline running from NW Europe to East Asia. Although a proper differentiation has been established between the cline extremes of western Europe and South Asia, populations geographically located in between, i.e, Middle East and Mediterranean populations, require more detailed study in order to characterize their genetic background as well as to further understand their demographic histories. To initiate these studies, three ancestry informative SNP (AI-SNP) multiplex panels: the SNPforID 34-plex, Eurasiaplex and a novel 33-plex assay were used to describe the ancestry patterns of a total of 24 populations ranging across the longitudinal axis from NW Europe to East Asia. Different ancestry inference approaches, including STRUCTURE, PCA, DAPC and Snipper Bayes analysis, were applied to determine relationships among populations. The structure results show differentiation between continental groups and a NW to SE allele frequency cline running across Eurasian populations. This study adds useful population data that could be used as reference genotypes for future ancestry investigations in forensic cases. The 33-plex assay also includes pigmentation predictive SNPs, but this study primarily focused on Eurasian population differentiation using 33-plex and its combination with the other two AI-SNP sets.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Ásia , Impressões Digitais de DNA , Análise Discriminante , Europa (Continente) , Frequência do Gene , Humanos , Funções Verossimilhança , Reação em Cadeia da Polimerase Multiplex , Análise de Componente Principal
19.
Forensic Sci Int Genet ; 13: 3-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25051225

RESUMO

New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier - Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.


Assuntos
Etnicidade/genética , Cor de Olho/genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Brasil , DNA/genética , Genótipo , Humanos , Funções Verossimilhança , Modelos Logísticos , Sensibilidade e Especificidade , Venezuela
20.
Forensic Sci Int Genet ; 10: 12-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24680124

RESUMO

Chile is a disproportionately long and narrow country defined by the southern Andes and Pacific coastline where a level of genetic sub-structure resulting from distances of several thousand kilometers might be expected across the most distantly separated regions. Although STR databases created for the Chilean Legal Medical Service indicate an absence of sub-structure, such a characteristic requires further exploration when introducing additional forensic markers. Notably, Single Nucleotide Polymorphisms (SNPs) have a much lower mutation rate than STRs and can show more stable distributions of genetic variation if population movement is restricted. In this study we evaluated 451 Chilean urban samples from the North, North-Central, Central, South-Central and South regions of Chile for the 52 SNPs of the SNPforID forensic identification panel to explore the underlying genetic structure of Chilean populations. Results reveal similar genetic distances between groups suggesting a single SNP database for the whole of Chile is appropriate. To further understand the genetic composition of Chilean populations that comprise the bulk of individuals with both European and Native American ancestries, ancestral membership proportions were evaluated and pairwise comparisons to other American populations were made.


Assuntos
Marcadores Genéticos , Geografia , Polimorfismo de Nucleotídeo Único , Chile , DNA/genética , Genética Populacional , Humanos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...