Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (132)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29443069

RESUMO

Biosensors are becoming increasingly important and implemented in various fields such as pathogen detection, molecular diagnosis, environmental monitoring, and food safety control. In this context, we used ß-lactamases as efficient reporter enzymes in several protein-protein interaction studies. Furthermore, their ability to accept insertions of peptides or structured proteins/domains strongly encourages the use of these enzymes to generate chimeric proteins. In a recent study, we inserted a single-domain antibody fragment into the Bacillus licheniformis BlaP ß-lactamase. These small domains, also called nanobodies, are defined as the antigen-binding domains of single chain antibodies from camelids. Like common double chain antibodies, they show high affinities and specificities for their targets. The resulting chimeric protein exhibited a high affinity against its target while retaining the ß-lactamase activity. This suggests that the nanobody and ß-lactamase moieties remain functional. In the present work, we report a detailed protocol that combines our hybrid ß-lactamase system to the biosensor technology. The specific binding of the nanobody to its target can be detected thanks to a conductimetric measurement of the protons released by the catalytic activity of the enzyme.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , beta-Lactamases/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...