Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1650: 462256, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34082187

RESUMO

An analytical method based on low-temperature partitioning extraction (LTPE) followed by high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis was developed and validated for the determination of eight multiclass antibiotics in wastewater. The analyzed target antibiotics included one ß-lactam, two sulfonamides, three fluoroquinolones, one macrolide and one diaminopyrimidine. LTPE parameters such as sample pH, volume ratio between sample and extractor solvent, ultra-sonic extraction time, extraction tube material, solvent and volume to reconstitute the sample extracts, were optimized. Additionally, the influence of solids on extraction efficiency was evaluated. Quantification of the target antibiotics was performed by double consecutive injection method, without the use of a labeled compound, in order to correct matrix effects. The whole samples were analyzed, including, liquid and solid fractions of wastewater. The results revealed that the filtration step can underestimate the total antibiotics concentration, particularly to the hydrophobic compounds that have higher affinity for solids, indicating that the suspended wastewater particulate should not be neglected. The method detection limit ranged from 18.54 ng L-1 (trimethoprim) to 78.49 ng L-1 (ciprofloxacin). Intra-day precision of less than 12.3% was achieved. The recoveries values ranged from 13.9% (sulfadiazine) to 48.9% (erythromycin) in influent samples and from 19.1% (sulfadiazine) to 57.2% (ciprofloxacin) in effluent samples. The method was applied to the measurement of antibiotic residues in influent and effluent from wastewater treatment plants. The majority target antibiotics were detected in wastewater samples. Their concentrations ranged from 237 to 9553 ng L-1 in influent and from 212 to 1660 ng L-1 in effluent. This work provides new insights on the applicability of LTPE for antibiotic residues extraction from wastewater. In addition, the performed analysis highlights the importance of measuring total concentrations of analytes in whole sample.


Assuntos
Antibacterianos , Técnicas de Química Analítica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/análise , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Temperatura Baixa , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 749: 141441, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836119

RESUMO

Sulfamethoxazole (SMX) has been commonly detected in wastewater treatment plant (WWTP) effluents. SMX and other antibiotics can be considered as environmental contaminants of emerging concern. Due to their toxicity effects and their potential for the development of bacterial resistance their presence in aquatic compartment becomes a threat to human health. This study evaluated the bioremediation of SMX in WWTP effluents using a tertiary treatment composed by microalgae-bacteria consortium under low intensity artificial LED illumination, and also the assessment of sulfonamide resistance gene (sul1). The removal of SMX from WWTP effluents were 54.34 ± 2.35%, in which the microalgae-bacteria consortium improves the removal performance of SMX. The main process of SMX removal can be attributed to the symbiotic biodegradation by bacteria due to the increase of oxygen released by the microalgae photosynthetic process. Therefore, the microalgae-bacteria consortium used in this study, demonstrated to be a promising alternative for bioremediation of SMX, with potential for removal others contaminants from wastewater effluent. However, the residual SMX and the relative abundance of antibiotics resistance genes (ARG) found in this study suggest that SMX contributes to selective pressure for ARG maintenance and proliferation in WWTP effluent. Thus, further studies to removal ARG from WWTP effluent are needed.


Assuntos
Microalgas , Purificação da Água , Antibacterianos/toxicidade , Bactérias , Biodegradação Ambiental , Resistência Microbiana a Medicamentos , Humanos , Sulfametoxazol/toxicidade , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...