Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biotechnol ; 65(11): 1777-1795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36790658

RESUMO

Phosphites have been used as inducers of resistance, activating the defense of plants and increasing its ability to respond to the invasion of the pathogen. However, the mode of action of phosphites in defense responses has not yet been fully elucidated. The objective of this study was to evaluate the effect of potassium phosphite (KPhi) in coffee cultivars with different levels of resistance to rust to clarify the mechanism by which KPhi activates the constitutive defense of plants. To this end, we studied the expression of genes and the activity of enzymes involved in the defense pathway of salicylic acid (SA) and reactive oxygen species (ROS), in addition to the levels of total soluble phenolic compounds and soluble lignin. Treatment with KPhi induced constitutive defense responses in cultivars resistant and susceptible to rust. The results suggest that KPhi acts in two parallel defense pathways, SA and ROS, which are essential for the induction of systemic acquired resistance (SAR) when activated simultaneously. The activation of the mechanisms associated with defense routes demonstrates that KPhi is a potential inducer of resistance in coffee plants.


Assuntos
Coffea , Fosfitos , Espécies Reativas de Oxigênio/metabolismo , Fosfitos/metabolismo , Coffea/genética , Coffea/metabolismo , Café , Plantas/metabolismo , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Environ Res ; 216(Pt 2): 114577, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252830

RESUMO

Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 µM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 µg g-1 DW) and S/T (235.61 µg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.


Assuntos
Cádmio , Solanum lycopersicum , Cádmio/toxicidade , Cádmio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta , Genótipo
3.
Sci Rep ; 12(1): 17270, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241651

RESUMO

Coffea canephora (2n = 2x = 22 chromosomes) is a species with extensive genetic diversity and desirable agronomic traits for coffee breeding programs. However, obtaining a new coffee cultivar through conventional breeding techniques may require more than 30 years of crossing cycles and selection, which hampers the effort of keeping up with market demands and rapidly proposing more resilient to climate change varieties. Although, the application of modern biotechnology tools such as precision genetic engineering technologies may enable a faster cultivar development process. Therefore, we aimed to validate the CRISPR/Cas9 system to generate mutations on a selected genotype of C. canephora, the clone 14. Embryogenic calli and a multiplex binary vector containing two sgRNAs targeting different exons of the CcPDS gene were used. The sgRNAs were under the C. canephora U6 promoter regulation. The target gene encodes phytoene desaturase, an enzyme essential for photosynthesis involved in ß-carotene biosynthesis. Somatic seedlings and embryos with albino, variegated and green phenotypes regenerated after Agrobacterium tumefaciens-mediated genetic transformation were analyzed by verifying the insertion of the Cas9 gene and later by sequencing the sgRNAs target regions in the genome of Robusta modified seedlings. Among them, 77% had the expected mutations, and of which, 50% of them had at least one target with a homozygous mutation. The genotype, temperature of co-cultivation with the bacteria, and light intensity used for subsequent embryo regeneration appeared to strongly influence the successful regeneration of plants with a mutated CcPDS gene in the Coffea genus.


Assuntos
Coffea , Sistemas CRISPR-Cas , Coffea/genética , Café , Edição de Genes , Oxirredutases , Melhoramento Vegetal , beta Caroteno
4.
PLoS One ; 17(2): e0258838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143519

RESUMO

Pathogen-associated molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) localized on the host plasma membrane. These receptors activate a broad-spectrum and durable defense, which are desired characteristics for disease resistance in plant breeding programs. In this study, candidate sequences for PRRs with lysin motifs (LysM) were investigated in the Coffea arabica genome. For this, approaches based on the principle of sequence similarity, conservation of motifs and domains, phylogenetic analysis, and modulation of gene expression in response to Hemileia vastatrix were used. The candidate sequences for PRRs in C. arabica (Ca1-LYP, Ca2-LYP, Ca1-CERK1, Ca2-CERK1, Ca-LYK4, Ca1-LYK5 and Ca2-LYK5) showed high similarity with the reference PRRs used: Os-CEBiP, At-CERK1, At-LYK4 and At-LYK5. Moreover, the ectodomains of these sequences showed high identity or similarity with the reference sequences, indicating structural and functional conservation. The studied sequences are also phylogenetically related to the reference PRRs described in Arabidopsis, rice, and other plant species. All candidates for receptors had their expression induced after the inoculation with H. vastatrix, since the first time of sampling at 6 hours post-inoculation (hpi). At 24 hpi, there was a significant increase in expression, for most of the receptors evaluated, and at 48 hpi, a suppression. The results showed that the candidate sequences for PRRs in the C. arabica genome display high homology with fungal PRRs already described in the literature. Besides, they respond to pathogen inoculation and seem to be involved in the perception or signaling of fungal chitin, acting as receptors or co-receptors of this molecule. These findings represent an advance in the understanding of the basal immunity of this species.


Assuntos
Basidiomycota/genética , Coffea/genética , Proteínas de Plantas/genética , Receptores de Reconhecimento de Padrão/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Basidiomycota/fisiologia , Coffea/metabolismo , Coffea/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genoma de Planta , Oryza/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/classificação , Receptores de Reconhecimento de Padrão/metabolismo , Alinhamento de Sequência
5.
Mol Biol Rep ; 49(3): 1973-1984, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35034287

RESUMO

BACKGROUND: Small auxin-up RNA (SAUR) genes form a wide family supposedly involved in different physiological and developmental processes in plants such as leaf senescence, auxin signaling and transport, hypocotyl development and tolerance to abiotic stresses. The transcription of SAUR genes is quickly induced by auxins, a group of phytohormones of major importance on embryo development. To better understand the distribution and expression profile of such still not explored family in Coffea sp., especially during the development of somatic embryogenesis (SE), SAUR members were characterized in silico using the available Coffea canephora genome data and analyzed for gene expression by RT-qPCR in C. arabica embryogenic samples. METHODS AND RESULTS: Over C. canephora genome 31 CcSAURs were distributed by 11 chromosomes. Out of these 31 gene members, 5 SAURs were selected for gene expression analysis in C. arabica embryogenic materials. CaSAUR12 and CaSAUR18 were the members highly expressed through almost all plant materials. The other genes had more expression in at least one of the developing embryo stages or plantlets. The CaSAUR12 was the only member to exhibit an increased expression in both non-embryogenic calli and the developing embryo stages. CONCLUSION: The identification of SAUR family on C. canephora genome followed by the analysis of gene expression profile across coffee somatic embryogenesis process on C. arabica represents a further additional step towards a better comprehension of molecular components acting on SE. Along with new research about this gene family such knowledge may support studies about clonal propagation methods via somatic embryogenesis to help the scientific community towards improvements into coffee crop.


Assuntos
Café , Ácidos Indolacéticos , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Técnicas de Embriogênese Somática de Plantas , RNA , Transcriptoma
6.
Mol Biotechnol ; 64(3): 263-277, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595725

RESUMO

Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.


Assuntos
Café/crescimento & desenvolvimento , Resistência à Doença , Proteínas de Plantas/genética , Café/classificação , Café/genética , Café/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Fenóis/metabolismo , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia
7.
BMC Genomics ; 20(1): 812, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694532

RESUMO

BACKGROUND: Coffee production relies on plantations with varieties from Coffea arabica and Coffea canephora species. The first, the most representative in terms of coffee consumption, is mostly propagated by seeds, which leads to management problems regarding the plantations maintenance, harvest and processing of grains. Therefore, an efficient clonal propagation process is required for this species cultivation, which is possible by reaching a scalable and cost-effective somatic embryogenesis protocol. A key process on somatic embryogenesis induction is the auxin homeostasis performed by Gretchen Hagen 3 (GH3) proteins through amino acid conjugation. In this study, the GH3 family members were identified on C. canephora genome, and by performing analysis related to gene and protein structure and transcriptomic profile on embryogenic tissues, we point a GH3 gene as a potential regulator of auxin homeostasis during early somatic embryogenesis in C. arabica plants. RESULTS: We have searched within the published C. canephora genome and found 17 GH3 family members. We checked the conserved domains for GH3 proteins and clustered the members in three main groups according to phylogenetic relationships. We identified amino acids sets in four GH3 proteins that are related to acidic amino acid conjugation to auxin, and using a transcription factor (TF) network approach followed by RT-qPCR we analyzed their possible transcriptional regulators and expression profiles in cells with contrasting embryogenic potential in C. arabica. The CaGH3.15 expression pattern is the most correlated with embryogenic potential and with CaBBM, a C. arabica ortholog of a major somatic embryogenesis regulator. CONCLUSION: Therefore, one out of the GH3 members may be influencing on coffee somatic embryogenesis by auxin conjugation with acidic amino acids, which leads to the phytohormone degradation. It is an indicative that this gene can serve as a molecular marker for coffee cells with embryogenic potential and needs to be further studied on how much determinant it is for this process. This work, together with future studies, can support the improvement of coffee clonal propagation through in vitro derived somatic embryos.


Assuntos
Coffea/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Homeostase , Ácidos Indolacéticos/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Conformação Proteica
8.
J Plant Physiol ; 229: 122-131, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30071503

RESUMO

The physiological and molecular responses to water stress are mediated by a range of mechanisms, many of which involve abscisic acid (ABA)-dependent signaling pathways. In addition, plants contain drought response genes that can be induced by ABA-independent routes, mediated by secondary messengers such as Ca2+, or regulated by epigenetic modifications. The complex processes involved in the response to water stress can be investigated using molecular techniques to evaluate the expression patterns of genes of interest and to infer the behavior of different genotypes and species. In the present study, we first analyzed the stability of a set of reference genes for normalization of the gene expression with real-time quantitative polymerase chain reaction (RT-qPCR), since there were no results related to the genotype used in this study. We verified that although there were some variations between algorithms used, the three most stable reference genes were SAND, PP2A-3 and EF-1α. The expressions of genes encoding for proteins associated with drought-tolerance responses, namely 9-cis-epoxycarotenoid dioxygenase 3 (EgrNCED3), pyrabactin resistance 1 (EgrPYR1), dehydration-responsive element-binding 2.5 (EgrDREB2.5) transcription factors, calcium-dependent protein kinase 26 (EgrCDPK26), methyl transferase 1 (EgrMET1) and deficient in DNA methylation 1 (EgrDDM1) protein, were determined by RT-qPCR in leaf samples from drought sensitive (VM05) and drought tolerant (VM01) clones of the hybrid Eucalyptus camaldulensis x Eucalyptus urophylla grown under water stress and irrigation conditions. When the two clones were maintained under conditions of water deficiency, VM01 exhibited higher expression levels of EgrNCED3 and EgrPYR1 genes than VM05 at all sampling times, implying that ABA biosynthesis and subsequent induction of the ABA-dependent cascade mediated by the PYR1-ABA receptor complex were enhanced in the tolerant clone. Under water-stress conditions, this clone also presented increased expression of the EgrDREB2.5 gene, representative of an ABA-independent cascade, and of the EgrCPK26 gene, related to stomatal opening and closure. On the other hand, the expression levels of EgrMET1 and EgrDDM1 genes in the sensitive clone were higher than in the tolerant clone under all conditions, showing a putative impact of epigenetic modifications on tolerance to water deficiency. The results obtained indicate that the superior ability of the VM01-tolerant clone to perceive water deficiency and activate drought-resistance genes is associated with the high expression levels of EgrNCED3, EgrPYR1 and EgrDREB2.5 under water-stress conditions. These findings will facilitate future research on the functional characterization of stress-related response genes, the identification of molecular markers, the evaluation of drought tolerance and genetic transformation in tree species.


Assuntos
Eucalyptus/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Secas , Epigênese Genética/genética , Eucalyptus/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Braz. arch. biol. technol ; 57(3): 326-333, May-June 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-709389

RESUMO

Garcinia brasiliensis, popularly known as Bacupari, is native to the Amazon and commonly used in folk medicine for its therapeutic properties. This plant is rich in bioactive compounds like benzophenones. However, there are no works about the in vitro establishment and achievement of secondary metabolites in this plant. Thus, the aim of this work was to determine the growth curve and to perform the biochemical and phytochemical analyses in calli obtained from the procambium segments of Bacupari. The growth curve of calli followed a sigmoidal pattern, with four distinct phases (lag, exponential, linear, deceleration). Total soluble sugars were higher on the inoculation day and the reducing sugars on the 20 th day. Amino acids increased from the 60 th day up to the stabilization on the 120 th day. The protein content varied, but it seemed to be related to the amino acids metabolism. The phytochemical screening showed the presence of phenolic and flavonoid compounds in the calli and the HPLC analysis allowed the identification of Fukugetin, Guttiferone A and 7-epiclusianone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...