Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36224473

RESUMO

Photoreceptors with different spectral sensitivities serve different physiological and behavioral roles. We hypothesized that such functional evolutionary optimization could also include differences in phototransduction dynamics. We recorded elementary responses to light, quantum bumps (QBs), of broadband green-sensitive and ultraviolet (UV)-sensitive photoreceptors in the cockroach, Periplaneta americana, compound eyes using intracellular recordings. In addition to control photoreceptors, we used photoreceptors from cockroaches whose green opsin 1 (GO1) or UV opsin expression was suppressed by RNA interference. In the control broadband and UV-sensitive photoreceptors average input resistances were similar, but the membrane capacitance, a proxy for membrane area, was smaller in the broadband photoreceptors. QBs recorded in the broadband photoreceptors had comparatively short latencies, high amplitudes and short durations. Absolute sensitivities of both opsin knockdown photoreceptors were significantly lower than in wild type, and, unexpectedly, their latency was significantly longer while the amplitudes were not changed. Morphologic examination of GO1 knockdown photoreceptors did not find significant differences in rhabdom size compared to wild type. Our results differ from previous findings in Drosophila melanogaster rhodopsin mutants characterized by progressive rhabdomere degeneration, where QB amplitudes were larger but phototransduction latency was not changed compared to wild type.


Assuntos
Baratas , Periplaneta , Animais , Periplaneta/fisiologia , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Drosophila melanogaster/metabolismo , Transdução de Sinal Luminoso
2.
Water Res ; 201: 117286, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102597

RESUMO

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reservoirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynamics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a feasible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in this study for four catchment-lake systems to help in their proactive management. We assessed the performance of the resulting seasonal forecasts of discharge and water temperature by comparing them with hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Forecasts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low performance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had higher performance in natural lakes than in reservoirs, which means human water control is a relevant factor affecting predictability, and the performance increases with water depth in all four case studies. Further investigation into the skillful water temperature predictions should aim to identify the extent to which performance is a consequence of thermal inertia (i.e., lead-in conditions).


Assuntos
Lagos , Água , Austrália , Europa (Continente) , Previsões , Humanos , Estações do Ano , Temperatura
3.
J Neurophysiol ; 125(6): 2264-2278, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949886

RESUMO

Locusts have auditory structures called Müller's organs attached to tympanic membranes on either side of the abdomen. We measured the normalized abundances of 500 different mRNA transcripts in 320 Müller's organs obtained from 160 locusts (Schistocerca gregaria) that had been subjected to a loud continuous 3-kHz tone for 24 h. Abundance ratios were then measured relative to transcripts from 360 control organs. A histogram of the number of observed transcripts versus their abundance ratios (noise exposed/control) was well fitted by a Cauchy distribution with median value near one. Transcripts below 5% and above 95% of the cumulative distribution function of the fitted Cauchy distribution were selected as putatively different from the expected values of an untreated preparation. This yielded eight transcripts with ratios increased by noise exposure (ratios 1.689-3.038) and 18 transcripts with reduced ratios (0.069-0.457). Most of the transcripts with increased abundance represented genes responsible for cuticular construction, suggesting extensive remodeling of some or all the cuticular components of the auditory structure, whereas the reduced abundance transcripts were mostly involved in lipid and protein storage and metabolism, suggesting a profound reduction in metabolic activity in response to the overstimulation.NEW & NOTEWORTHY Locust ears have functional and genetic similarities to human ears, including loss of hearing from age or noise exposure. We measured transcript abundances in transcriptomes of noise-exposed and control locust ears. The data indicate remodeling of the ear tympanum and profound reductions in metabolism that may explain reduced sound transduction. These findings advance our understanding of this useful model and suggest further experiments to elucidate mechanisms that ears use to cope with excessive stimulation.


Assuntos
Orelha Média , Perda Auditiva Provocada por Ruído , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia , Animais , Modelos Animais de Doenças , Orelha Média/patologia , Orelha Média/fisiopatologia , Gafanhotos , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia
4.
Sci Rep ; 11(1): 7994, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846502

RESUMO

Mechanosensory neurons use mechanotransduction (MET) ion channels to detect mechanical forces and displacements. Proteins that function as MET channels have appeared multiple times during evolution and occur in at least four different families: the DEG/ENaC and TRP channels, as well as the TMC and Piezo proteins. We found twelve putative members of MET channel families in two spider transcriptomes, but detected only one, the Piezo protein, by in situ hybridization in their mechanosensory neurons. In contrast, probes for orthologs of TRP, ENaC or TMC genes that code MET channels in other species did not produce any signals in these cells. An antibody against C. salei Piezo detected the protein in all parts of their mechanosensory cells and in many neurons of the CNS. Unspecific blockers of MET channels, Ruthenium Red and GsMTx4, had no effect on the mechanically activated currents of the mechanosensory VS-3 neurons, but the latter toxin reduced action potential firing when these cells were stimulated electrically. The Piezo protein is expressed throughout the spider nervous system including the mechanosensory neurons. It is possible that it contributes to mechanosensory transduction in spider mechanosensilla, but it must have other functions in peripheral and central neurons.


Assuntos
Sistema Nervoso Central/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Neurônios/metabolismo , Aranhas/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Canais Iônicos/genética , Mecanotransdução Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rutênio Vermelho/farmacologia , Venenos de Aranha/farmacologia , Aranhas/genética , Homologia Estrutural de Proteína , Tela Subcutânea/metabolismo , Sinapsinas/metabolismo , Transcriptoma/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35284871

RESUMO

Redwater fever is an economically important disease of cattle in the United Kingdom caused by the protozoan parasite Babesia divergens. Control efforts are dependent on accurate local historic knowledge of disease occurrence, together with an accurate appreciation of current underlying risk factors. Importantly, the involvement of red deer in the transmission of this pathogen in the UK remains unclear. We employed a polymerase chain reaction approach combined with DNA sequencing to investigate Babesia infections in livestock and red deer at a UK farm with a history of tick-borne disease. This revealed several B. divergens-infected cattle that were not displaying overt clinical signs. Additionally, 11% of red deer on the farmland and surrounding areas were infected with this parasite. We also found that 16% of the red deer were infected with Babesia odocoilei, the first time this parasite has been detected in the UK. The finding of B. divergens in the red deer population updates our knowledge of epidemiology in the UK and has implications for the effective control of redwater fever.

6.
Environ Pollut ; 267: 115629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254650

RESUMO

Ingestion of lead (Pb) derived from ammunition used in the hunting of game animals is recognised to be a significant potential source of Pb exposure of wild birds, including birds of prey. However, there are only limited data for birds of prey in Europe regarding tissue concentrations and origins of Pb. Eurasian buzzards (Buteo buteo) found dead in the United Kingdom during an 11-year period were collected and the concentrations of Pb in the liver and femur were measured. Concentrations in the liver consistent with acute exposure to Pb were found in 2.7% of birds and concentration in the femur consistent with exposure to lethal levels were found in 4.0% of individuals. Pb concentration in the femur showed no evidence of consistent variation among or within years, but was greater for old than for young birds. The Pb concentration in the liver showed no effect of the birds' age, but varied markedly among years and showed a consistent tendency to increase substantially within years throughout the UK hunting season for gamebirds. The resemblance of the stable isotope composition of Pb from buzzard livers to that of Pb from the types of shotgun ammunition most widely-used in the UK increased markedly with increasing Pb concentration in the liver. Stable isotope results were consistent with 57% of the mass of Pb in livers of all of the buzzards sampled being derived from shotgun pellets, with this proportion being 89% for the birds with concentrations indicating acute exposure to Pb. Hence, most of the Pb acquired by Eurasian buzzards which have liver concentrations likely to be associated with lethal and sublethal effects is probably obtained when they prey upon or scavenge gamebirds and mammals shot using Pb shotgun pellets.


Assuntos
Aves , Chumbo , Animais , Europa (Continente) , Humanos , Fígado , Reino Unido
7.
Artigo em Inglês | MEDLINE | ID: mdl-32285147

RESUMO

Visual signal transmission by Drosophila melanogaster photoreceptors is mediated by a Gq protein that activates a phospholipase C (PLC). Mutations and deficiencies in expression of either of these proteins cause severe defects in phototransduction. Here we investigated whether these proteins are also involved in the cockroach, Periplaneta americana, phototransduction by silencing Gq α-subunit (Gqα) and phosphoinositide-specific phospholipase C (PLC) by RNA interference and observing responses to single photons (quantum bumps, QB). We found (1) non-specific decreases in membrane resistance, membrane capacitance and absolute sensitivity in the photoreceptors of both Gqα and PLC knockdowns, and (2) small changes in QB statistics. Despite significant decreases in expressions of Gq and PLC mRNA, the changes in QB properties were surprisingly modest, with mean latencies increasing by ~ 10%, and without significant decrease in their amplitudes. To better understand our results, we used a mathematical model of the phototransduction cascade. By modifying the Gq and PLC abundances, and diffusion rates for Gq, we found that QB latencies and amplitudes deteriorated noticeably only after large decreases in the protein levels, especially when Gq diffusion was slow. Also, reduction in Gq but not PLC lowered quantum efficiency. These results suggest that expression of the proteins may be redundant.


Assuntos
Periplaneta/fisiologia , Animais , Fenômenos Eletrofisiológicos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Fótons , Células Fotorreceptoras de Invertebrados/fisiologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
8.
J Neurosci ; 40(15): 3130-3140, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32144181

RESUMO

Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.


Assuntos
Gafanhotos , Perda Auditiva Provocada por Ruído/fisiopatologia , Membrana Timpânica/fisiopatologia , Animais , Vias Auditivas/fisiopatologia , Fenômenos Biomecânicos , Nervo Coclear/fisiopatologia , Fenômenos Eletrofisiológicos , Potenciais Evocados Auditivos , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/genética , Linfa , Masculino , Mecanotransdução Celular , Ruído , RNA/biossíntese , RNA/genética
9.
Invert Neurosci ; 20(1): 1, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31960127

RESUMO

Proteins encoded by nanchung, inactive, nompC and piezo genes have been shown to play crucial roles in the initial detection of mechanical force by various insect auditory neurons, nociceptors and touch receptors. Most of this previous research has been performed on the larval and adult fruit fly, Drosophila melanogaster. We identified and assembled all four homologous genes in transcriptomes from the cockroach, Periplaneta americana. Injection of long double-stranded RNA (dsRNA) into the adult cockroach abdomen successfully reduced the expression of each gene, as measured by quantitative PCR (RT-qPCR). A simple electrophysiological assay was used to record action potential firing in afferent nerves of cockroach femoral tactile spines in response to a standardized mechanical step displacement. Responses of nanchung knockdown animals were significantly reduced compared to matched sham-injected animals at 14 and 21 days after injection, and inactive knockdowns similarly at 21 days. In contrast, responses of nompC and piezo knockdowns were unchanged. Our results support a model in which Nanchung and Inactive proteins combine to form a part of the mechanotransduction mechanism in the cockroach tactile spine.


Assuntos
Proteínas de Insetos/metabolismo , Mecanotransdução Celular/fisiologia , Periplaneta/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Interferência de RNA , Células Receptoras Sensoriais/metabolismo
10.
Parasit Vectors ; 12(1): 535, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718680

RESUMO

BACKGROUND: Red deer (Cervus elaphus) are a common wild definitive host for liver fluke (Fasciola hepatica) that have been the subject of limited diagnostic surveillance. This study aimed to explore the extent to which coprological diagnoses for F. hepatica in red deer in the Scottish Highlands, Scotland, are associated with variability among hosts and habitats. METHODS: Our analyses were based on coproantigen ELISA diagnoses derived from faecal samples that were collected from carcasses of culled deer on nine hunting estates during two sampling seasons. Sampling locations were used as centroids about which circular home ranges were quantified. Data were stratified by season, and associations between host, hydrological, land cover and meteorological variables and binary diagnoses during 2013-2014 (n = 390) were explored by mixed effect logistic regression. The ability of our model to predict diagnoses relative to that which would be expected by chance was quantified, and data collected during 2012-2013 (n = 289) were used to assess model transferability. RESULTS: During 2013-2014, habitat and host characteristics explained 28% of variation in diagnoses, whereby half of the explained variation was attributed to differences among estates. The probability of a positive diagnosis was positively associated with the length of streams in the immediate surroundings of each sampling location, but no non-zero relationships were found for land cover or lifetime average weather variables. Regardless of habitat, the probability of a positive diagnosis remained greatest for males, although males were always sampled earlier in the year than females. A slight decrease in prediction efficacy occurred when our model was used to predict diagnoses for out-of-sample data. CONCLUSIONS: We are cautious to extrapolate our findings geographically, owing to a large proportion of variation attributable to overarching differences among estates. Nevertheless, the temporal transferability of our model is encouraging. While we did not identify any non-zero relationship between meteorological variables and probability of diagnosis, we attribute this (in part) to limitations of interpolated meteorological data. Further study into non-independent diagnoses within estates and differences among estates in terms of deer management, would improve our understanding of F. hepatica prevalence in wild deer.


Assuntos
Cervos/parasitologia , Ecossistema , Fasciolíase/veterinária , Fezes/parasitologia , Animais , Fasciola hepatica , Fasciolíase/diagnóstico , Fasciolíase/epidemiologia , Feminino , Masculino , Prevalência , Fatores de Risco , Escócia/epidemiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30238156

RESUMO

Absence of screening pigment in insect compound eyes has been linked to visual dysfunction. We investigated how its loss in a white-eyed mutant (W-E) alters the photoreceptor electrophysiological properties, opsin gene expression, and the behavior of the cockroach, Periplaneta americana. Whole-cell patch-clamp recordings of green-sensitive photoreceptors in W-E cockroaches gave reduced membrane capacitance, absolute sensitivity to light, and light-induced currents. Decreased low-pass filtering increased voltage-bump amplitudes in W-E photoreceptors. Intracellular recordings showed that angular sensitivity of W-E photoreceptors had two distinct components: a large narrow component with the same acceptance angle as wild type, plus a relatively small wide component. Information processing was evaluated using Gaussian white-noise modulated light stimulation. In bright light, W-E photoreceptors demonstrated higher signal gain and signal power than wild-type photoreceptors. Expression levels of the primary UV- and green-sensitive opsins were lower and the secondary green-sensitive opsin significantly higher in W-E than in wild-type retinae. In behavioral experiments, W-E cockroaches were significantly less active in dim green light, consistent with the relatively low light sensitivity of their photoreceptors. Overall, these differences can be related to the loss of screening pigment function and to a compensatory decrease in the rhabdomere size in W-E retinae.


Assuntos
Olho Composto de Artrópodes/fisiologia , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Comportamento Animal/fisiologia , Capacitância Elétrica , Expressão Gênica , Proteínas de Insetos/metabolismo , Espaço Intracelular/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Atividade Motora , Opsinas/metabolismo , Técnicas de Patch-Clamp , Estimulação Luminosa , Pigmentação , Potássio/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
12.
J Exp Biol ; 221(Pt 21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224371

RESUMO

The compound eye of Periplaneta americana contains two spectral classes of photoreceptors: narrow-band UV-sensitive and broad-band green-sensitive. In intracellular recordings, stimulation of green-sensitive photoreceptors with flashes of relatively bright UV/violet light produced anomalous delayed depolarization after the end of the normal light response, whereas stimulation of UV-sensitive photoreceptors with green light elicited biphasic responses characterized by initial transient hyperpolarization followed by prolonged delayed depolarization. To explore the basis for these findings, we used RNA interference to selectively suppress expression of the genes encoding green opsin (GO1), UV opsin (UVO) or both. The hyperpolarizing component in UV-sensitive photoreceptors was eliminated and the delayed depolarization was reduced after GO1 knockdown, suggesting that the hyperpolarization represents fast inhibitory interactions between green- and UV-sensitive photoreceptors. Green-sensitive photoreceptor responses of GO1 knockdowns to flashes of UV/violet were almost exclusively biphasic, whereas residual responses to green had normal kinetics. Knockdown of UVO reduced the responses of UV-sensitive photoreceptors but had minor effects on delayed depolarization in green-sensitive photoreceptors. Angular sensitivity analysis indicated that delayed depolarization of green-sensitive photoreceptors by violet light originates from excitation of (an)other photoreceptor(s) in the same ommatidium. The angle at which the maximal delayed depolarization was observed in green-sensitive photoreceptors stimulated with violet light did not match the angle of the maximal transient depolarization. In contrast, no significant mismatch was observed for delayed depolarization elicited by green light. These results suggest that the cellular sources of the normal transient and additional delayed depolarization by violet light are separate and distinct.


Assuntos
Luz , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Genes de Insetos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Opsinas/genética , Opsinas/metabolismo , Estimulação Luminosa , Interferência de RNA
13.
J Gen Physiol ; 150(10): 1386-1396, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115661

RESUMO

Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.


Assuntos
Adaptação Fisiológica , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Expressão Gênica , Masculino , Potássio/metabolismo
14.
Front Physiol ; 9: 857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050453

RESUMO

The biogenic amines octopamine (OA), tyramine (TA), dopamine (DA), serotonin (5-HT), and histamine (HA) affect diverse physiological and behavioral processes in invertebrates, but recent findings indicate that an additional adrenergic system exists in at least some invertebrates. Transcriptome analysis has made it possible to identify biogenic amine receptor genes in a wide variety of species whose genomes have not yet been sequenced. This approach provides new sequences for research into the evolutionary history of biogenic amine receptors and allows them to be studied in experimentally accessible animal models. The Central American Wandering spider, Cupiennius salei, is an experimental model for neurophysiological, developmental and behavioral research. We identified ten different biogenic amine receptors in C. salei transcriptomes. Phylogenetic analysis indicated that, in addition to the typical receptors for OA, TA, DA, and 5-HT in protostome invertebrates, spiders also have α1- and α2-adrenergic receptors, but lack TAR2 receptors and one invertebrate specific DA receptor type. In situ hybridization revealed four types of biogenic amine receptors expressed in C. salei mechanosensory neurons. We used intracellular electrophysiological experiments and pharmacological tools to determine how each receptor type contributes to modulation of these neurons. We show that arachnids have similar groups of biogenic amine receptors to other protostome invertebrates, but they lack two clades. We also clarify that arachnids and many other invertebrates have both α1- and α2-adrenergic, likely OA receptors. Our results indicate that in addition to an OAß-receptor that regulates rapid and large changes in sensitivity via a Gs-protein activating a cAMP mediated pathway, the C. salei mechanosensory neurons have a constitutively active TAR1 and/or α2-adrenergic receptor type that adjusts the baseline sensitivity to a level appropriate for the behavioral state of the animal by a Gq-protein that mobilizes Ca2+.

15.
Biol Cybern ; 112(5): 403-413, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29915978

RESUMO

In a previous study, we used linear frequency response analysis to show that naturalistic stimulation of spider primary mechanosensory neurons produced different response dynamics than the commonly used Gaussian random noise. We isolated this difference to the production of action potentials from receptor potential and suggested that the different distribution of frequency components in the naturalistic signal increased the nonlinearity of action potential encoding. Here, we tested the relative contributions of first- and second-order processes to the action potential signal by measuring linear and quadratic coherence functions. Naturalistic stimulation shifted the linear coherence toward lower frequencies, while quadratic coherence was always higher than linear coherence and increased with naturalistic stimulation. In an initial attempt to separate the order of time-dependent and nonlinear processes, we fitted quadratic frequency response functions by two block-structured models consisting of a power-law filter and a static second-order nonlinearity in alternate cascade orders. The same cascade models were then fitted to the original time domain data by conventional numerical analysis algorithms, using a polynomial function as the static nonlinearity. Quadratic models with a linear filter followed by a static nonlinearity were favored over the reverse order, but with weak significance. Polynomial nonlinear functions indicated that rectification is a major nonlinearity. A complete quantitative description of sensory encoding in these primary mechanoreceptors remains elusive but clearly requires quadratic and higher nonlinear operations on the input signal to explain the sensitivity of dynamic behavior to different input signal patterns.


Assuntos
Potenciais de Ação/fisiologia , Mecanorreceptores/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Dinâmica não Linear , Aranhas/citologia , Animais , Simulação por Computador
16.
J Neurophysiol ; 119(6): 2276-2290, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537919

RESUMO

Natural visual scenes are rarely random. Instead, intensity and wavelength change slowly in time and space over many regions of the scene, so that neighboring temporal and spatial visual inputs are more correlated and contain less information than truly random signals. It has been suggested that sensory optimization to match these higher order correlations (HOC) occurs at the earliest visual stages, and that photoreceptors can process temporal natural signals more efficiently than random signals. We tested this early-stage hypothesis by comparing the information content of Calliphora vicina photoreceptor responses to naturalistic inputs before and after removing HOC by randomizing phase. Forty different, 60-s long, naturalistic sequences (NS) were used, together with randomized-phase versions of the same sequences to give pink noise (PN) so that each input pair had identical means, variances, mean contrasts, and power spectra. We measured the information content of inputs and membrane potential responses by three different methods: coherence, mutual information, and compression entropy. We also used entropy and phase statistics of each pair as measures of HOC. Responses to randomized signals generally had higher gain, signal-to-noise ratio, and information rates than responses to NS. Information rate increased with a strong, positive, linear correlation to phase randomization within sequence pairs. This was confirmed by varying the degree of phase randomization. Our data indicate that individual photoreceptors encode input information by Weber's law, with HOC within natural sequences reducing information transfer by decreasing the number of local contrast events that exceed the noise-imposed threshold. NEW & NOTEWORTHY Natural visual scenes feature statistical regularities, or higher order correlations (HOC), both in time and space, to encode surfaces, textures, and object boundaries. Visual systems rely on this information; however, it remains controversial whether individual photoreceptors can discriminate and enhance information encoded in HOC. Here we show that the more HOC the stimulus contains, the lower the information transfer rate of photoreceptors. We explain our findings by applying the Weber's paradigm of differential signal perception.


Assuntos
Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Dípteros , Feminino , Potenciais da Membrana , Percepção Visual
17.
Cell Tissue Res ; 370(1): 71-88, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687927

RESUMO

The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.


Assuntos
Neurônios Colinérgicos/citologia , FMRFamida/análise , Células Receptoras Sensoriais/citologia , Aranhas/anatomia & histologia , Aranhas/citologia , Animais , Proteínas de Artrópodes/análise , Colina O-Acetiltransferase/análise , Feminino , Mecanotransdução Celular , Proteínas Vesiculares de Transporte de Acetilcolina/análise
18.
Sci Total Environ ; 601-602: 1606-1618, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28609848

RESUMO

Tissue concentrations of essential trace and toxic elements in red deer (Cervus elaphus) are associated with the plants, soil and water they ingest. As such, variation in tissue concentrations is associated with variation in local geochemistry and bioavailability of elements. Physiological factors such as liver fluke (Fasciola hepatica) infection, breeding status, and in-tissue element interactions may also affect tissue concentrations, though their effects in red deer are not well understood. The primary objective of this study was therefore to survey wild red deer liver element concentrations across a range of geographically distinct populations during the Scottish red deer stalking season; and, in so doing, establishes element reference ranges while also exploring geographic and temporal variation and physiological factors. Livers were sampled from carcasses intended for human consumption on nine hunting estates during two seasons (2012-13, 2013-14). Samples were digested and analysed by ICP-OES for essential trace elements (Co, Cu, Fe, Mn, Mo, Se, Zn) and for Cd. Data (n=787) were modelled against cull location, date, and F. hepatica diagnosis. Interactions between elements within liver, and differences in element profiles between estates, were explored by principal component analysis. Our results revealed marked geographic variation in Cd, Cu and Se, where up to four-fold differences in median element concentrations occurred between estates, and, in males, Mn, Mo and Zn declined as the breeding season approached. In both sexes, within-liver associations (Cd-Cu-Se and Mn-Mo-Zn) were found. In females, liver Zn was greater on average in individuals that were not infected with F. hepatica. This study is the first to quantify geographic variation in Scottish red deer liver element concentrations; the drivers of which remain to be explored (and may be management related), and, the consequence of which may affect sub-clinical health.


Assuntos
Cervos , Poluentes Ambientais/análise , Metais Pesados/análise , Oligoelementos/análise , Animais , Animais Selvagens , Feminino , Fígado , Masculino , Escócia
19.
J Gen Physiol ; 149(4): 455-464, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28283577

RESUMO

Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.


Assuntos
Proteínas de Insetos/metabolismo , Transdução de Sinal Luminoso , Células Fotorreceptoras de Invertebrados/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação , Animais , Proteínas de Insetos/genética , Periplaneta/metabolismo , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/genética
20.
J Physiol ; 595(16): 5465-5479, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087896

RESUMO

KEY POINTS: The principles underlying the evolutionary selection of ion channels for expression in sensory neurons are unclear. Photoreceptor depolarization in the diurnal Drosophila melanogaster is predominantly provided by light-activated transient receptor potential (TRP) channels, whereas repolarization is mediated by sustained voltage-gated K+ channels of the Shab family. In the present study, we show that phototransduction in the nocturnal cockroach Periplaneta americana is predominantly mediated by TRP-like channels, whereas membrane repolarization is based on EAG channels. Although bright light stimulates Shab channels in Drosophila, further restricting depolarization and improving membrane bandwidth, it strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium and is abolished by chelating intracellular calcium or suppressing eag gene expression. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth. This makes EAG unsuitable for light response conditioning during the day and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects. ABSTRACT: The principles underlying evolutionary selection of ion channels for expression in sensory neurons are unclear. Among species possessing microvillar photoreceptors, the major ionic conductances have only been identified in Drosophila melanogaster. In Drosophila, depolarization is provided by light-activated transient receptor potential (TRP) channels with a minor contribution from TRP-like (TRPL) channels, whereas repolarization is mediated by sustained voltage-gated K+ (Kv) channels of the Shab family. Bright light stimulates Shab channels, further restricting depolarization and improving membrane bandwidth. In the present study, data obtained using a combination of electrophysiological, pharmacological and molecular knockdown techniques strongly suggest that in photoreceptors of the nocturnal cockroach Periplaneta americana the major excitatory channel is TRPL, whereas the predominant delayed rectifier is EAG, a ubiquitous but enigmatic Kv channel. By contrast to the diurnal Drosophila, bright light strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium entering the cytosol and is amplified following inhibition of calcium extrusion, and it can also be abolished by chelating intracellular calcium or suppressing eag gene expression by RNA interference. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth, impairing information transfer. LDI is also observed in the nocturnal cricket Gryllus integer, whereas, in the diurnal water strider Gerris lacustris, the delayed rectifier is up-regulated by light. Although LDI is not expected to reduce delayed rectifier current in the normal illumination environment of nocturnal cockroaches and crickets, it makes EAG unsuitable for light response conditioning during the day, and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects.


Assuntos
Canais de Potássio Éter-A-Go-Go/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Ritmo Circadiano , Canais de Potássio Éter-A-Go-Go/genética , Gryllidae/fisiologia , Heterópteros/fisiologia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Luz , Masculino , Microvilosidades , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Interferência de RNA , RNA Mensageiro/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...